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Abstract

The study of ground spaces of local Hamiltonians is a fundamental task in condensed matter physics.
In terms of computational complexity theory, a common focus has been to estimate a given Hamiltonian’s
ground state energy. However, from a physics perspective, it is often more relevant to understand the
structure of the ground space itself. In this paper, we pursue this latter direction by introducing the
physically well-motivated notion of “ground state connectivity” of local Hamiltonians, which captures
problems in areas ranging from stabilizer codes to quantum memories. We show that determining how
“connected” the ground space of a local Hamiltonian is can range from QCMA-complete to NEXP-
complete. As a result, we obtain a natural QCMA-complete problem, a goal which has proven elusive
since the conception of QCMA over a decade ago. Our proofs crucially rely on a new technical tool, the
Traversal Lemma, which analyzes the Hilbert space a local unitary evolution must traverse under certain
conditions, and which we believe may be of independent interest.

[A technical draft of this paper can be found at: http://arxiv.org/abs/1409.3182]
Over the last fifteen years, the merging of condensed matter physics and computational complexity the-

ory has given rise to a new field of study known as quantum Hamiltonian complexity [Osb12, GHL14]. The
cornerstone of this field is arguably Kitaev’s [KSV02] quantum version of the Cook-Levin theorem [Coo72,
Lev73], which says that the problem of estimating the ground state energy of a local Hamiltonian is com-
plete for the class Quantum Merlin Arthur (QMA), where QMA is a natural generalization of NP. Here, a
k-local Hamiltonian is an operator H = ∑i Hi acting on n qubits, such that each local Hermitian constraint
Hi acts non-trivially on k qubits. The ground state energy of H is simply the smallest eigenvalue of H, and
the corresponding eigenspace is known as the ground space of H.

Kitaev’s result spurred a long line of subsequent works on variants of the ground energy estimation
problem (see, e.g. [Osb12, GHL14] for surveys), known as the k-local Hamiltonian problem (k-LH). For
example, Oliveira and Terhal showed that LH remains QMA-complete in the physically motivated case of
qubits arranged on a 2D lattice [OT08]. Bravyi and Vyalyi [BV05] proved that the commuting variant of
2-LH is in NP [BV05]. More recently, the complexity of 2-LH was completely characterized by Cubitt
and Montanaro [CM13] in a manner analogous to Schaeffer’s dichotomy theorem for Boolean satisfiabil-
ity [Sch78]. Thus, k-LH has served as an excellent “benchmark” problem for delving into the complexity of
problems encountered in condensed matter physics. Yet, physically speaking, what is often more relevant
than the ground state energy is an understanding of the ground space itself. What are its properties? For ex-
ample, is it topologically ordered? Can we evaluate local observables against it [Osb12]? It is this direction
which we pursue in this paper.

Specifically, in this paper we define a notion of connectivity of the ground space of H, which roughly
asks: Given ground states |ψ〉 and |φ〉 of H as input, are they “connected” through the ground space of H?
Somewhat more formally, we have (see Section 2 of technical draft for a formal definition):

Definition 1 (Ground State Connectivity (GSCON) (informal)). Given as input a local Hamiltonian H and
ground states |ψ〉 and |φ〉 of H (specified via quantum circuits), as well as parameters m and l, does there
exist a sequence of l-qubit unitaries (Ui)

m
i=1 such that:

1. (|ψ〉 mapped to |φ〉) Um · · ·U1 |ψ〉 ≈ |φ〉, and
2. (intermediate states in ground space) ∀ i ∈ [m], Ui · · ·U1 |ψ〉 is in the ground space of H?

In other words, GSCON asks whether there exists a sequence of m unitaries, each acting on (at most) l
qubits, mapping the initial state |ψ〉 to the final state |φ〉 through the ground space of H. We stress that the
parameters m (i.e. number of unitaries) and l (i.e. the locality of each unitary) are key; as we discuss shortly,
depending on their setting, the complexity of GSCON can vary greatly.
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Motivation. The original inspiration for this work came from a recently active area in classical complexity
theory on reconfiguration problems (see Previous work below for details). For example, the reconfiguration
problem for 3SAT asks: Given a 3SAT formula φ and satisfying assignments x and y for φ, does there exist a
sequence of bit flips mapping x to y, such that each intermediate assignment encountered is also a satisfying
assignment for φ? Although the classical study of reconfiguration problems is arguably mostly interesting
from a theoretical perspective, its quantum variant (i.e. GSCON) turns out to be physically very relevant.
We now discuss connections to quantum memories and stabilizer codes.

Quantum memories. A key challenge in building quantum computers is the implementation of long-lived
qubit systems. In low-temperature condensed matter systems, one approach is to encode a qubit in the
ground state of a gapped Hamiltonian with a degenerate ground space. Here, the degeneracy ensures the
qubit has at least two basis states, logical |0̃〉 and |1̃〉, and the gap ensures that external noise does not (eas-
ily) take a ground state out of the ground space. However, this is not sufficient — although environmental
noise may not take the state out of the ground space, it can still alter the state within the ground space (e.g.
inadvertently map |0̃〉 to |1̃〉). Thus, making the typical assumption that errors act locally, it should ideally
not be possible for |0̃〉 to be mapped to |1̃〉 through the ground space via a sequence of local operations.
This is precisely the principle behind Kitaev’s toy chain model [Kit01], and the motivation behind the toric
code [Kit03] (see also [KL09]). This notion of how “robust” a quantum memory is can thus be phrased as
an instance of GSCON: Given a gapped Hamiltonian H, a ground state |ψ〉 to which the quantum memory
is initialized, and an undesired ground state |φ〉, is there a sequence of local errors mapping the state of our
quantum memory through the ground space from |ψ〉 to |φ〉?
Stabilizer codes. Roughly, a stabilizer code [Got97] is a quantum error-correcting code defined by a set of
commuting Hermitian operators, S = {G1, . . . , Gk }, such that Gi 6= −I and ‖Gi‖∞ ≤ 1 for all Gi ∈ S.
The codespace for S is the set of all |ψ〉 satisfying Gi |ψ〉 = |ψ〉 for all i ∈ [k]. In other words, defining G+

i
as the projection onto the +1 eigenspace of Gi, the codespace is the ground space of the positive semidefi-
nite Hamiltonian H := ∑k

i=1(I − G+
i ). Typically, errors are assumed to occur on a small number of qubits

at a time; with this assumption in place, the following is a special case of GSCON: Given H and codewords
|ψ〉 and |φ〉, does there exist a sequence of at most m local errors mapping |ψ〉 to |φ〉, such that the entire
error process is undetectable, i.e. each intermediate state remains in the codespace?

Results. Having motivated GSCON, we now informally state our results.

Theorem 2 (See Theorem 5.1 of technical draft for a formal statement). GSCON for polynomially large m
(i.e. for polynomially many local unitaries U) and l = 2 (i.e. 2-qubit unitaries) is QCMA-complete.

Here, QCMA is QMA except with a classical prover [AN02]. Theorem 2 says that determining whether there
exists a poly-size quantum circuit mapping |ψ〉 to |φ〉 through the ground space of H is QCMA-complete.

Theorem 3 (See Theorem 6.1 of technical draft for a formal statement). GSCON for exponentially large
m (i.e. for exponentially many local unitaries U) and l = 1 (i.e. 1-qubit unitaries) is PSPACE-complete.

Theorem 3 says that determining whether there exists an exponential length sequence of 1-qubit unitaries
mapping |ψ〉 to |φ〉 through the ground space of H is PSPACE-complete. Note that the settings of both
m and l above are crucial for our proofs; for example, for exponential m and l = 2 (i.e. 2-qubit unitaries
instead of 1-qubit unitaries), our proof of containment in PSPACE for Theorem 3 does not hold.

Finally, we consider a succinct variant of GSCON, called SUCCINCT GSCON, in which the Hamil-
tonian H has a succinct circuit description, and the initial and final states |ψ〉 and |φ〉 are product states.

Theorem 4 (See Theorem 7.4 of technical draft for a formal statement). SUCCINCT GSCON for ex-
ponentially large m (i.e. for exponentially many local unitaries U) and l = 1 (i.e. 1-qubit unitaries) is
NEXP-complete.

Proof techniques. Our results crucially rely on a new technical lemma called the Traversal Lemma, as well
as the use of ε-nets and what we call ε-pseudo-nets. We now discuss the techniques behind Theorem 2
(QCMA-completeness) in more detail, as they perhaps best exemplify the approaches taken in this work.
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We begin by outlining the central idea behind the construction in our QCMA-hardness proof. Let V be
an arbitrary QCMA verification circuit, and let H′ be the local Hamiltonian obtained from V via Kitaev’s
circuit-to-Hamiltonian construction [KSV02]. Then, we design the input Hamiltonian H to GSCON so
that “traversing its ground space” is equivalent to simulating the following protocol: Starting from the all-
zeroes state, prepare the ground state of H′ (which can be done efficiently since V is a QCMA circuit), and
subsequently flip a set of special qubits called GO qubits. This latter step “activates” the check Hamiltonian
H, which now “verifies” that the ground state prepared is indeed correct. Finally, uncompute the ground
state to arrive at a target state of all-zeroes except in the GO register, which is now set to all ones.

To prove correctness of this construction, our main technical tool is a new lemma we call the Traversal
Lemma (Lemma 4.2 in technical draft), which analyzes the Hilbert space a local unitary evolution must
traverse in certain settings. Specifically, define two states |ψ〉 and |φ〉 as k-orthogonal if for any k-local
unitary U, we have 〈φ|U |ψ〉 = 0. In other words, any application of a k-local unitary leaves |ψ〉 and |φ〉
orthogonal. Then, the Traversal Lemma says that for k-orthogonal states |ψ〉 and |φ〉, if we wish to map |ψ〉
to |φ〉 via a sequence of k-local unitaries, then at some step in this evolution we must leave the space spanned
by |ψ〉 and |φ〉, i.e. we must have “large” overlap with the orthogonal complement of |ψ〉 and |φ〉. To prove
the Traversal Lemma, we use a combination of the Gentle Measurement Lemma of Winter [Win99] and an
idea inspired by the quantum Zeno effect.

Finally, to show containment in QCMA, we introduce the notion of ε-pseudo-nets, which allow us to
easily discretize the space of d-dimensional unitary operators for any d ≥ 2. Such pseudo-nets come with
a tradeoff: On the negative side, they contain non-unitary operators. On the positive side, they are not only
straightforward to construct, but more importantly, they have the following property: Given any element A
in the pseudo-net, there are efficient explicit protocols for checking if A is close to unitary, and if so, for
“rounding” it to such a unitary.

Previous work. To the best of our knowledge, our work is the first to study reconfiguration in the quantum
setting. In contrast, in the classical setting, such problems have recently received much attention. In particu-
lar, our work was inspired by the paper of Gopalan, Kolaitis, Maneva, and Papadimitriou [GKMP06, Sch13],
which shows that determining whether two solutions x and y of a Boolean formula are connected through
the solution space is either in P or is PSPACE-complete, depending on the constraint types allowed in the
formula. More recently, Mouawad, Nishimura, Pathak and Raman [MNPR14] studied the variant of this
problem in which one seeks the shortest possible Boolean reconfiguration path; they show this problem is
either in P, NP-complete, or PSPACE-complete. In this sense, our definition of GSCON can be thought
of as a quantum generalization of the problem studied in Reference [MNPR14]. More generally, since
the work of Reference [GKMP06], a flurry of papers have appeared studying reconfiguration for problems
ranging from Boolean satisfiability to vertex cover to graph coloring [CvdHJ08, BC09, BJL+11, CvdHJ11,
FHHH11, IDH+11, Bon12, IKD12, IKOZ12, KMM12, Sch13, BB13, MNR+13, MNPR14, MNR14].

Significance. We have discussed GSCON in terms of physical motivation (see connections to stabi-
lizer codes and quantum memories discussed in Motivation above). Let us now discuss its appeal from
a complexity-theoretic perspective, in particular with regard to the class QCMA. It has been over a decade
since the introduction of QCMA by Aharonov and Naveh [AN02] and since that time a handful of complete
problems have been discovered for it [WJB03, WY08, JW06, GK12], such as determining if a quantum cir-
cuit acts almost as the identity on computational basis states [WJB03] and minimizing the Hamming weight
of a string accepted by a certain class of quantum circuits [GK12]. However, in contrast to the canonical
QMA-complete local Hamiltonian problem, the known QCMA-complete problems are arguably not very
natural. To this end, our work reveals the first physically well-motivated QCMA-complete problem, filling
this decade-long open gap.

As for our proof techniques, we believe the Traversal Lemma may prove useful in its own right. For
example, in quantum adiabatic algorithms, it is often notoriously difficult to understand how a quantum
state evolves in time from an easy-to-prepare initial state to some desired final state. The Traversal Lemma
gives us a tool for studying the behaviour of such evolutions, playing a crucial role in our analysis here. We
remark, however, that in quantum adiabatic evolution, the Hamiltonian itself changes with time, whereas
here our Hamiltonian is fixed and we apply local unitary gates to our quantum state.
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