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We consider a distributed decoupling task for a tripartite system in which Bob and Charlie “ex-
clude” Alice by destroying correlation between BC and A in a tripartite state ρABC shared by the
parties using only local random operations. We refer to this task as excluding. In an asymptotic limit
of infinite copies of ρABC , we investigate the excluding cost, namely, the cost of randomness required
to accomplish excluding. In particular, we consider a case where the initial state is one obtained from
a bipartite unitary U as Ψ(U)ABC = (UAB⊗IC)(IA/d⊗|Φd〉〈Φd|BC)(U †AB⊗IC), for which excluding
can be accomplished by only Charlie’s local random operation. We prove that the excluding cost in
this case is equal to the cost of randomness required for turning a tripartite pure state sufficiently
close to a quantum Markov chain by a random operation, in the asymptotic limit of infinite copies.
We derive the single-letter formula of this “Markovianizing cost” for arbitrary tripartite pure state
by using the data compression theorem for mixed-state quantum information sources. We show that
the excluding cost derived here gives an upper bound on the cost of resources required in a model
of distributed quantum computation, and that it gives the optimal quantum communication rate
required in distributed compression of tripartite quantum state in a particular setting.

1 Overview

The decoupling approach has played a significant role in the field of quantum information theory
for a decade [1–8]. The approach was first established by [1–3] in an asymptotic regime, and it was
shown that most of the central coding theorems in quantum Shannon theory are systematically derived
from protocols known as quantum state merging [2] and the fully-quantum Slepian Wolf [3]. Recent
studies also develop the decoupling approach in the single-shot scenario [4, 5]. The main concern in
this approach is the minimum amount of randomness required to destroy correlation between two
quantum systems, which is revealed by the so-called “decoupling theorem”. Depending on types
of operations applied to destroy the correlation, there are several formulations of the decoupling
theorem, such as one based on the partial trace [3, 4], random unitary operations [6], projective
measurements [1, 2], and arbitrary CPTP maps [5]. However, most of the studies so far has only
focused on the bipartite setting. This is problematic particularly if we consider multipartite quantum
communication tasks [9–13].

In this contribution, we introduce a task that we call excluding, which is a generalization of
bipartite decoupling to more than bipartite scenario. Here, Alice, Bob and Charlie initially share
copies of a state (ρABC)⊗n. The task is for Bob and Charlie to destroy correlation between BC
and A by local random unitary operations on Bn and Cn, respectively. In the asymptotic limit of
n→ ∞, and under the condition that the excluding is accomplished within a vanishingly small error,
we investigate the minimum number of random unitaries per copy necessary to apply for Bob and
Charlie.

Definition 1.1 We say that the rate pair (R1, R2) is achievable in excluding of A with respect to
ρABC if, for any ε > 0 and for sufficiently large n, there exists a random unitary map T Bn

1 : τ 7→
2−nR1

∑2nR1

k=1 VkτV
†
k on Bn and T Cn

2 : τ ′ 7→ 2−nR2
∑2nR2

l=1 Wlτ
′W †l on Cn such that∥∥(idAn ⊗ T Bn

1 ⊗ T Cn

2 )((ρABC)⊗n) − (ρA)⊗n ⊗ (T Bn

1 ⊗ T Cn

2 )((ρBC)⊗n)
∥∥

1
≤ ε.

We consider a case where ρABC is a particular mixed state Ψ(U)ABC = (UAB ⊗ IC)(IA/d ⊗
|Φd〉〈Φd|BC)(U †AB ⊗IC), |Φd〉 is a maximally mixed state and UAB is a bipartite unitary, and d is the
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dimension of the local systems. In this case, excluding can be accomplished by only random operations
on Charlie’s system, since Ψ(U)AB = IA/d⊗IB/d and thus complete randomization of Alice’s system
turns the state into Ψ(U)′ABC = IA/d⊗IB/d⊗IC/d at the cost of 2 log d bits of randomness per copy.
Thus the rate pair (R1 = 0, R2 = 2 log d) is achievable. However, this strategy may cost too much
randomness for excluding, because it decorrelates B and C in addition to destroy correlation between
BC and A. There might be a more efficient protocol which requires less randomness by selectively de-
stroying correlation between BC and A, without decorrelating B and C. It turns out to be impossible
to show the existence of such an efficient strategy by a straightforward application of random coding
method using the Haar distributed unitary ensemble. In this contribution, we prove the existence of
an optimal strategy for excluding Ψ(U)ABC by constructing a random coding method based on the
structure of a quantum Markov chain. We derive, as a function of U , the excluding cost of U defined
as Exc(U) := inf {R | (R1 = 0, R2 = R)is achievable in excluding of A with respect to Ψ(U)ABC}.

2 Results

It is proved in [14] that, associated with any bipartite state ΨAC , there exists an essentially unique
unitary isomorphism Γ : C → c0cLcR that satisfies the following two conditions. An algorithm for
obtaining Γ is given in [14,15].

1. ΨAC is decomposed as

ΓCΨACΓ†C =
∑
j∈J

pj |j〉〈j|c0 ⊗ ϕAcL
j ⊗ ωcR

j , (2.1)

where {pj}j∈J is a probability distribution, ϕj ∈ S(HA⊗HcL), ωcR
j ∈ S(HcR), and 〈j|j′〉 = δjj′ .

2. Any quantum operation on C that leaves ΨAC invariant has a Stinespring dilation of the form
E(ρ) = Tr[UCE(ρC⊗|0〉〈0|E)U †CE ], where UCE is a unitary that is decomposed as ΓCUCEΓ†C =∑

j∈J |j〉〈j|c0 ⊗ IcL ⊗U cRE
j , and U cRE

j are unitaries that satisfy TrE [Uj(ω
cR
j ⊗ |0〉〈0|E)U †j ] = ωaR

j

for all j.

A tripartite state ΥABC is called a quantum Markov chain conditioned by B if it satisfies I(A :
C|B) = 0 [14]. Our main results are summarized in the following statements.

Definition 2.1 We say that a tripartite state ΨABC is turned to a Markov state conditioned by
B with the randomness cost R on C if, for any ε > 0 and for sufficiently large n, there exist a
random unitary operation Tn : τ 7→ 2−nR

∑2nR

k=1 VkτV
†
k on Cn and a quantum Markov chain ΥAnBnCn

conditioned by Bn such that ‖Tn(Ψ⊗n) − ΥAnBnCn‖1 ≤ ε. The “Markovianizing cost” is defined as
MC|B(ΨABC) := inf{R | ΨABC is turned to a Markov state conditioned by B with the randomness
cost R on C}.

Theorem 2.2 Let |Ψ〉ABC be a pure state such that ΨAC is decomposed as Eq.(2.1). We have

MC|B(ΨABC) = H({pj}j∈J) + 2
∑
j∈J

pjS(ϕcL
j ).

Theorem 2.3 Consider a tripartite state |Ψ(U)〉ÃBC := (UAB ⊗ IA′C)|Φd〉AA′ |Φd〉BC , where Ã =
AA′. Define Markovianizing cost of U as M(U) := MC|B(Ψ(U)ÃBC . Then we have Exc(U) = M(U).

In the optimality proof of Thm.2.2, we use the data compression theorem for mixed-state quantum
information sources [16]. In the achievability proof, we construct a random coding method using the
ensemble of unitaries of the form V =

∑
j∈J |j〉〈j|c0 ⊗ vcL

j ⊗ IcR , where we choose each vj randomly
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and independently according to the Haar measure. The same method is used to construct a random
unitary operation that “selectively decorrelates AB and C” in the achievability proof of Thm.2.3.
The optimality proof is based on a recently proposed characterization of a quantum Markov chain in
terms of commutator [17]. The two theorems show that neither the Markovianizing cost of Ψ nor the
excluding cost of U is a continuous function of its argument.

3 Applications

In our recent paper [18], we formulated a problem of reducing the entanglement cost and the
classical communication cost in an LOCC implementation of bipartite unitaries in an asymptotic sce-
nario. Combined with the results obtained there, we prove that the Markovianizing cost MA|B(Ψ(U))
gives an upper bound on the cost of entanglement, forward and backward classical communication
required therein. We strongly expect that it is also optimal in arbitrary two-round protocols. More
precisely, we prove the following statement.

Definition 3.1 Consider a unitary operator U : HA⊗HB → HA⊗HB acting on two d-level systems
A and B. Let |Φ(U)〉 := (UAB ⊗ IRARB )|Φd〉ARA |Φd〉BRB where Φd is a d-dimensional maximally
entangled state. Let Alice and Bob have registers A0, A1 and B0, B1, respectively. We refer to the
following quantum operation Mn as an entanglement-assisted LOCC implementation of U⊗n with
the error εn, the entanglement cost logKn − logLn, the forward communication cost C→n , and the
backward communication cost C←n . Here, Mn : AnA0 ⊗BnB0 → AnA1 ⊗BnB1 is an LOCC and

F (ρ(Mn),Φ(U)⊗n ⊗ ΦA1B1
Ln

) ≥ 1 − εn

for ρ(Mn) = (Mn ⊗ idRARB )(|ΦARA
d 〉⊗n|ΦBRB

d 〉⊗n|ΦKn〉A0B0). C→n and C←n is the total amount of
classical communication transmitted from Alice to Bob and Bob to Alice, respectively, in Mn. A rate
triplet (R,C→, C←) is said to be achievable if there exists a sequence of entanglement-assisted LOCC
implementations of U⊗n such that εn → 0, 1

n(logKn − logLn) → R, 1
nC
→
n → C→ and 1

nC
←
n → C←

in the limit of n→ ∞.

Theorem 3.2 A rate triplet (R,C→, C←) is achievable if R,C→, C← > M(U).

We also apply our results to an analysis of distributed compression of quantum states. In the
m-party distributed compression, senders A1, · · · , Am initially share n identical copies of a state
|ψ〉A1···AmR with an inaccessible reference system R. The task is to compress their shares and transmit
them to a receiver with a vanishingly small error, by using as small amount of quantum communication
from each sender to the receiver as possible, but with no communication among senders. We are
interested in finding out the set of the achievable quantum communication rates (Q1, · · · , Qm) from
each senders to the receiver. Contrary to the bipartite setting [3, 9], little has been known on more
than bipartite cases [10].

We consider distributed compression of a tripartite quantum state Ψ̃(U)ÃB̃C := Ψ(U)ABC⊗ΦA′B′

d3 ,
where B̃ = BB′, C̃ = CC ′ and Φd3 is the maximally entangled state with the Schmidt rank d3. In a
particular situation in which QC = 0 and QÃ can be arbitrarily large, we can evaluate the minimum
achievable rate QB̃. We prove the following.

Theorem 3.3 The rate QB̃ = 1
2R is achievable if and only if R ≥M(U).

4 Concluding Remarks

We formulate and investigate a multipartite version of distributed decoupling to exclude one of the
parties in an asymptotic scenario. By using the structure of a quantum Markov chain, we construct a
random coding method novel enough to derive the optimal cost of randomness required in excluding.
Our results opens a new possibility to investigate multipartite quantum communication tasks, as well
as to analyze the structure of multipartite quantum correlations, from the decoupling point of view.
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