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Abstract

We obtain a general connection between a quantum advantage in communication com-
plexity and non-locality. We show that given any protocol offering a (sufficiently large) quan-
tum advantage in communication complexity, there exists a way of obtaining measurement
statistics which violates some Bell inequality. Our main tool is port-based teleportation.
If the gap between quantum and classical communication complexity can grow arbitrarily
large, the ratio of the quantum value to the classical value of the Bell quantity with the
increase in the number of inputs and outputs becomes unbounded.

The key element which distinguishes classical from quantum information theory is quantum
correlations. Their strength and the mysterious nature was first recognized in the EPR para-
dox [1] and then quantitatively expressed in Bell’s theorem [2]. They are similar to classical
correlations in that one cannot take advantage of them to perform superluminal communica-
tion, yet, every attempt to explain such correlations from the point of view of classical theory
– namely, to find a local hidden variable model – is impossible. For a long time the existence
of quantum correlations was merely of interest to philosophically minded physicists, and was
considered an exotic peculiarity, rather than a useful resource for practical problems in physics
or computer science. This has changed dramatically in recent years – it became apparent
that quantum correlations can be used as a resource for a number of distributed information
processing tasks [3, 4, 5] producing surprising results [6, 7].

One area where using quantum correlations has wide-reaching practical implications is com-
munication complexity. A typical instance of a communication complexity problem features
two parties, Alice and Bob who are given inputs x ∈ X = {0, 1}n and y ∈ Y = {0, 1}n respec-
tively, distributed according to some apriori distribution µ. They wish to compute the value
of f : X × Y → {0, 1} by exchanging messages between each other. The minimum amount
of communication required to accomplish the task by exchanging classical bits (with bounded
probability of success) is called classical communication complexity, denoted as C(f).

There are two ways to account for the communication complexity of computing a function
when we want to make use of quantum correlations. In the first one, two parties, Alice and Bob,
share a maximally entangled state |Ψ−〉AB = 1√

2
(|01〉 − |10〉)AB beforehand and are allowed

to exchange classical bits in order to solve the problem. Another approach is to have no
pre-shared entanglement, but instead allow Alice and Bob to exchange qubits. The latter
protocol can always be converted to the former with pre-shared entanglement and classical
communication. We denote quantum communication complexity of computing the function
f(x, y) (with bounded probability of success) as Q(f).
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For a large number of problems, the respective quantum communication complexity is much
lower compared to its classical counterpart [5, 8].

In such cases, we say that there exists a quantum advantage for communication complexity.
In other words, one achieves quantum advantage if the quantum communication complexity of
the function is lower than its corresponding classical communication complexity.

One of the most striking example of quantum advantage is the famous Raz problem [6, 9]
where quantum communication complexity is exponentially smaller than classical. Another
example is the “hidden matching” problem for which the quantum advantage leads to one of
the strongest possible violations of the Bell inequality [10]. The latter inequality plays an
important role in detecting quantum correlations and certifying the genuinely quantum nature
of resources at hand.

As a matter of fact, the very first protocols offering quantum advantage were based on a
quantum violation of certain Bell inequalities [7]. It was even shown that for a very large class
of multiparty Bell inequalities, correlations which violate them lead to a quantum advantage
(perhaps, for a peculiar function) [11]. This indicates that non-locality often leads to a quantum
advantage. However, there are more and more communication protocols which offer a quantum
advantage, but, nevertheless, they are not known to violate any Bell inequality. We ask the
opposite question:

Q: Does quantum advantage in communication complexity inherently rely on the non-local
nature of correlations?

Until now, there were only two concrete examples where one could certify quantum corre-
lations in the context of communication complexity by providing a quantum state and a set
of measurements whose statistics violate some Bell inequality. The first case is the ”hidden
matching” problem and the second one – a theorem, which states that a special subset of pro-
tocols that provide quantum advantage also imply the violation of local realism [7]. To get the
violation of Bell inequalities obtained from the examples above, one had to perform an involved
analysis which relied on a problem-specific set of symmetries. Thus, such an approach cannot be
generalized to an arbitrary protocol for achieving a quantum advantage in the communication
complexity problem.

Our main result is that for any given protocol which operates without prior entanglement,
and offers a (sufficiently large) quantum advantage in communication complexity, there exists
a way of obtaining measurement statistics which violate some linear Bell inequality. Thus,
whenever we find such a protocol which computes the value of function f(x, y) and achieves
Q(f) < C(f), then it must harbor some non-local quantum correlations.

We provide a universal method which takes a protocol that achieves the quantum advantage
in any single- or multi-round communication complexity problem and uses it to derive the
violation of some linear Bell inequality. This method can be generalized to a setting with more
then two parties. Our Bell inequalities lead to the so-called unbounded violation, (see [12]):
the ratio of the quantum value to the classical value of the Bell quantity can grow arbitrarily
large with the increase of the number of inputs and outputs, whenever C(f) > (Q(f))4. In
particular, the exponential advantage leads to the exponential ratio.

Examples show that our protocol produces large violation which is a bit weaker than the
best known one: n

log2 n
[16]. This seems to be the price for its universality. However, it is an

interesting open question, whether one can find a communication complexity protocol, such that
the obtained Bell inequality would be in some respect better than existing large Bell violations.
Another challenge is to decrease the amount of entanglement used to violate our Bell inequalities,
which in our construction is exponential in the quantum communication complexity of the
given problem. Similarly, the output size grows exponentially, so there is a question, whether
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there exists a more efficient method of exhibiting the non-locality of quantum communication
complexity schemes. Finally, our method does not cover the protocols with initial entanglement.
This is quite paradoxical, because protocols that use initial entanglement should be non-local
even more explicitly. It is therefore desirable to search for a method of demonstrating the
non-locality of such protocols.

Construction.
Our method consists of two parts. In the first part, given the protocol which computes function
f by using Q(f) qubits, and the optimal classical error probability achievable with (Q(f))4 bits,
we construct the corresponding linear Bell inequality. In the second part, we use the quantum
protocol to construct a set of quantum measurements on maximally entangled state which leads
to the violation of the Bell inequality above. The central ingredient of our construction is the
recently-discovered port-based teleportation [13, 14].

Proof ingredients.
Firstly, we start with quantum multi-round protocol to compute f which uses quantum com-
munication and no shared entanglement. This protocol requires Q qubits of communication
and achieves psucc ≥ 1/2 + ε. In this protocol, Alice and Bob may use local quantum memory
between rounds. Second, we construct the protocol without local quantum memory which in-
creases the cost of communication to O(Q2). This is achieved using the consequence of Yao’s
Compression Lemma [4, 15]:

Lemma 1. For any Q-qubit quantum communication protocol (without prior entanglement)
there exists an Q2 + 2Q-qubit quantum communication protocol such that Alice and Bob do not
need any local quantum memory that persists between the rounds.

The memoryless protocol is then used to obtain correlations P which together with classical
communication are used to recover the original communication complexity protocol which com-
putes f . The last part of the puzzle is a method of simulating the memoryless quantum protocol
using the above correlations and classical communication:

Lemma 2. Given the memoryless protocol for computing f which uses Q qubits of commu-
nication and achieves the success probability psucc ≥ 1/2 + ε, ε > 0, one can simulate it
using correlations P and O(Q2) bits of classical communication with the success probability
psucc ≥ 1/2 + (1− 2−Q)2Qε.

Now, if for a function f(x, y) there exists a gap between C(f) > Q4(f) with psucc = 1/2 + δ
for the classical communication complexity protocol, and δ � ε – then we observe the quantum
violation of the Bell inequality of the form:

∑
x,y

µ(x, y)
∑

(i1,...,i2r−1)∈I

p(oi2r−1 = f(x, y)|x, y) ≤ 1/2 + δ, (1)

where µ is a probability measure on X × Y , the set I denotes the set of all paths from the
root to the leaves of length 2r − 1 of the tree formed by the subsequent outputs of Alice and
Bob in the protocol. For all levels but the last one, every node on i-th level has Ni children
which correspond to the outcome of the i-th round of teleportation. The leaves of the tree
correspond to the outcomes of Bob’s binary observable, which is his guess of the value of the
function f(x, y).
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