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Summary. Techniques to efficiently compile higher-level quantum algorithms into lower-level
fault-tolerant circuits are needed for the implementation of a scalable, general purpose quantum
computer. Several universal gate sets arise from augmenting the set of Clifford gates by additional
gates that arise naturally from the underlying fault-tolerance scheme. Examples are the Clifford+T
basis which arises, e.g., from the surface code and the concatenated Steane code, in which the gate
T =

[
1 0
0 eiπ/4

]
is added, and the Clifford+π/12 basis which arises, e.g., from quantum computing

with metaplectic anyons [1], in which the gate K =
[
1 0
0 eiπ/6

]
is added.

While in principle the Solovay-Kitaev algorithm [2, 3] can be used to solve the synthesis prob-
lem for any universal gate set, and therefore also the above-mentioned special cases, there are
certain disadvantages to this approach, in particular the large depth of the resulting circuits. The
best-known upper bound on the circuit depth is O(log3.97(1/ε)), where ε is the precision of the
target approximation. In addition, the compilation time of the Solovay-Kitaev method, i.e., the
time it takes to execute the classical algorithm that produces the output circuit, is quite high,
namely almost cubic in log(1/ε). Fortunately, it was shown recently [4–7] that for the Clifford+T
basis, elementary number theory can be leveraged to obtain much more efficient algorithms for
approximating a single-qubit gate. The number of T gates in the resulting circuits scales close to
3 log2(1/ε) for single-qubit rotations around the Z-axis and the compilation time for these algo-
rithms has essentially the same scaling.

The point of the present work is two-fold. The first purpose (i) is to show that the constant in
the above estimates can be further reduced; this may come as a surprise as there is an information-
theoretic lower bound that establishes that there are Z-rotations that require 3 log2(1/ε) many T
gates to reach an approximation precision ε. However, this bound makes two assumptions: that
the underlying circuits are unitary and that they act only on a single qubit. By relaxing both
assumptions to (1) allow measurements and adaptive decisions on earlier results and (2) allow
to operate on more than one qubit through the use of an ancilla, we show that this bound can
be surpassed. Indeed, our best schemes lead to an expected T -gate count of 1.149 log2(1/ε) for
arbitrary Z-rotations. The second purpose (ii) is to show that we can overcome the limitation to
only synthesize for the Clifford+T basis and develop a general synthesis framework. For several gate
sets where the elementary gates have elements from an algebraic number field, we have developed
algorithms that can synthesize efficient probabilistic quantum circuits. This includes the field
Q(eπi/4), related to the Clifford+T basis, and the field Q(eπi/6), related to the metaplectic anyons.

We present two methods to synthesize probabilistic quantum circuits. Both can be thought of
as Markov chains that implement a walk on a set of unitaries in which the target Z-rotation is
an absorbing state of the walk: first, a method called “Repeat-Until-Success” in which all failure
branches are just the identity so that no correction is necessary, with the drawback (with small
probability) of a potentially unlimited run-time of the circuit, and second, a method called “Prob-
abilistic Quantum Circuits with Fallback” in which the chain is always guaranteed to terminate,
and corrections are performed in an adaptive fashion. Our main result is an efficient algorithm for
single-qubit decomposition that achieves an expected gate count of logb(1/ε) + O(log(log(1/ε))),
where b is related to an expansion property of the underlying basis; b is defined so that for a given
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Figure 1: (a) RUS and (b) PQF protocols to implement a unitary V .

depth t the number of unique circuits scales as Θ(bt). Specifically, b = 2 for Clifford+T , b = 4 for
Clifford+π/12, and b = 5 for the so-called Clifford+V basis [8].

Probabilistic Quantum Circuits. The general layout of a Repeat-Until-Success (RUS) cir-
cuit protocol is shown in Fig. 1(a) [9]. Consider a unitary operation U acting on n+m qubits, of
which n are target qubits and m are ancillary qubits, where U is decomposed into a Clifford+T
circuit. Consider a measurement of the ancilla qubits, such that one measurement outcome is la-
beled “success” and all other measurement outcomes are labeled “failure”. Let the unitary applied
to the target qubits upon measurement be V . In the RUS protocol, the circuit in the dashed box
is repeated on the (n + m)-qubit state until the “success” measurement is observed. Each time
a “failure” measurement is observed, an appropriate Clifford operator W † is applied in order to
revert the state of the target qubits to their original input state |ψ〉. We mainly focus on the case
where m = n = 1 and where W is the identity. The expected cost of a RUS design is most often
below the cost obtained with a purely unitary circuit design.

In contrast, the Probabilistic Quantum Circuit with Fallback (PQF) protocol requires at most
a small finite number of rounds, each of which implement (possibly different) unitaries U(Gi, ε)
on several qubits that upon successful measurement lead to the application of Gi, and one final,
purely unitary, correction step, called fallback, as shown in Fig. 1(b). The “question mark” box
denotes the binary classical control switch that implements the remainder of the circuit if and only
if the measurement result is 1. Let Fj |ψ〉 be the undesired result upon measurement of 1 at the

j-th round of the protocol. Then Gj−1 = GjF
†
j and we note that the synthesis algorithm computes

Πk−1
j=0Gj . The final fallback correction step may have considerable cost, however the probability of

requiring the fallback step can be very small, allowing for a decrease in overall expected cost.

Synthesis Algorithm. We have developed an algorithm to compile RUS circuits to approxi-
mate single-qubit rotations over the Clifford+T basis and an algorithm to compile PQF circuits that
works equally well over at least three universal bases: Clifford+T , Clifford+π/12, and Clifford+V .
The two algorithms share the same general flow shown on
the right. However, since the PQF protocol implements
different intermediate target rotations at each round, the
compilation sequence shown must be run for each PQF
round. The first stage of the sequence approximates the
phase factor eiθ with a unimodal cyclotomic rational, i.e.,
an algebraic number of the form z∗/z, where z ∈ Z[ω],
by finding an approximate solution of an integer relation
problem of the form a0 sin(θ/2)+a1 sin(θ/2+π/m)+ ...+
ad−1 sin(θ/2 + (d− 1)π/m) = 0, aj ∈ Z, where d is alge-
braic degree of e2π i/m, and m = 4 for the V basis, m = 8
for Clifford+T , and m = 12 for Clifford+π/12. This is
a so-called “integer relation problem” and we solve it us-
ing the PSLQ algorithm [11, 12] where the termination
condition is replaced by |z∗/z − ei θ| < ε. PSLQ can be
thought of as a multivariate generalization of the contin-
ued fraction algorithm. We have proven that PSLQ performance is very close to optimal with
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|z| < κε−1/4, for Clifford+T and Clifford+π/12, and |z| < κε−1/2 for Clifford+V .
The second stage aims at “boosting” the success probability: we perform several modification

trials z 7→ (r z), where r is in the real subring R of the cyclotomic integers Z[ω]. The purpose of
the trials is to find an r ∈ R such that (1) the probability of an undesired measurement outcome is
asymptotically small (e.g., in O(1/ log(1/ε))), and (2) r z can be expanded into a unitary matrix

U =
1
√
b
L

[
r z y
−y∗ r z∗

]
where y ∈ Z[ω], b = 5 for the V basis; b = 2 for the Clifford+T and Clifford+π/12 bases.

In the third stage, the two-qubit matrix corresponding to the unitary part of the RUS circuit or
to the unitary part of the current round in the PQF protocol is assembled. This stage is core for
the circuit synthesis given a suitable matrix U as above has been found (at Stage 2). For a PQF
round the desired two-qubit matrix is simply UPQF = CNOT (I ⊗ V ) CNOT whereas in the RUS
case it is URUS =

[
V 0
0 V †

]
.

During the fourth stage, an exact two-qubit circuit that implements the unitary obtained in
Stage 3 is compiled. It is somewhat hard only in the RUS version. We have proved in [10] that
a two-qubit circuit for URUS can be obtained as an expansion of a single-qubit Clifford+T for V
using processes described as T -code representation and Pauli decoration. We have proven that an
overhead introduced by these processes never exceeds nine T gates.

Cost Analysis. We prove that, given a desired precision ε, our PQF compilation method gener-
ates multi-round PQF circuits with a mean expected execution cost in logb(1/ε)+O(log(log(1/ε))),
where b = 5 for the V basis, b = 4 for Clifford+π/12 and b = 2 for Clifford+T . The RUS circuits
generated by the RUS compilation method over Clifford+T display the same asymptotic bound
with b = 2. We also show that multi-round PQF circuits follow a law of diminishing returns, with
a mean expected execution cost of the form Cround/p + O(qk), where k is the number or rounds,
Cround is a typical cost of executing the two-cubit unitary for a round, p is a typical probability of
obtaining the favorable measurement in a round, and q = 1−p is a typical probability of obtaining
the unfavorable measurement. Since our methods suppress q to a value in O(1/ log(1/ε)), then
possible distinction between the k-round and k + 1-round PQF protocols is in O(1/ log(1/ε)k).

Figure 2: Precision ε versus mean expected T -count.

Numerical Results. We eval-
uate the performance of our al-
gorithms on a set of 1000 an-
gles randomly drawn from (0, π/2)
at 30 target precisions ε ∈
{10−11, . . . , 10−40}. Fig. 2 com-
pares the cost of RUS and one-round
PQF circuits over the Clifford+T
basis. Maximum likelihood bounds
for mean expected T -count are
1.149 log2(1/ε)+9.2 for RUS and
log2(1/ε) + 4 log2(log2(1/ε))+1.187
for one-round PQF. The mean ex-
pected V -count for Clifford+V is
log5(1/ε)+0.95 log5(log5(1/ε))+7.26;
the mean expected π/12-count for Clifford+π/12 is log4(1/ε) + 2 log2(log2(1/ε)) + 3.48.
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