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1. Background

Gapped quantum Hamiltonians are commonly said to represent the same quantum phases of

matter, if there exists a gapped one-parameter family of Hamiltonians H(s) that connects them.

Here, the gap refers to the energy gap separating the ground state from the rest of the spectrum.

The ground state is distinguished throughout the Hamiltonian path H(s), yet the high energy

states can be mixed. This definition of equivalence is motivated by our general interest in low

energy phenomena where quantum fluctuation is expected to be large.

It is important that properties of the ground state do not change drastically along the Hamilto-

nian path. This is mathematically supported by quasi-adiabatic continuation [1], which says that

the instantaneous ground state |ψ(s)〉 of H(s) can be well approximated as |ψ(s)〉 ' U(s)|ψ(0)〉 by

a quantum circuit U(s) of depth that is much smaller than the system size, where 0 ≤ s ≤ 1. Since

a quantum circuit of small depth maps any local observable to local observable, any correlation in

the ground state will not be changed much at long distances. Conversely, given a quantum circuit

V = VdVd−1 · · ·V1 of small depth d one can devise a conntinuous gapped Hamiltonian path defined

by H(s) = V (s)HV (s)† where V (n/d) implements the first n layers of V for n = 1, 2, . . . , d.

This strongly suggests that all relevant information of the quantum phase of matter is contained

in a ground state vector up to local unitary transformations. From an information-theoretic point of

view, this means that a quantum phase of matter is essentially an entanglement pattern; recall that

the any bipartite entanglement measure such as entanglement entropy is required to be invariant

under any basis change on either party. One can reversely say that the bipartite entanglement

is what remains invariant under such local basis change. Analogously, if we are interested in

the many-body quantum state and its entanglement, any local unitary transformation should be

allowed, and the requirement of the transitivity for an equivalence relation drives us to consider

quantum circuits of finite depth when studying the entanglement of many-body quantum state.

Thus, we say different entanglement patterns represent distinct quantum phases of matter, and for

the lack of any symmetry restriction one may call them topological orders.

As the bipartite entanglement is quantified by the Schmidt coefficients, which are invariants

under either party’s basis change, it is natural and important to look for invariants of quantum

state vectors under local quantum circuits. Various quantities and properties have been proposed

as invariants of quantum states [2, 3, 4, 5]. The local indistinguishability is perhaps the easiest

to define mathematically, though hard to grasp intuitively. It is the property of a quantum state

that it has an orthogonal partner state which has the identical reduced density matrix for every
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local region. Any local observable that distinguishes the pair, if exists, will remain local under an

arbitrary small-depth quantum circuit. Thus, the local indistinguishability is an invariant of the

quantum state. It is binary valued, true or false, and hence is crude.

A theoretical guiding question to judge the strength of an invariant would be the following:

How deep a quantum circuit must be in order to transform a state to another? A good invariant

should be able to distinguish states that are intuitively thought to be different, and should show

that any transformation between the states takes a quantum circuit whose depth is increasing with

the system size. A simple problematic example is the toric code state on a sphere. It encodes zero

qubit in the ground state subspace; there is exactly one ground state. The local indistinguishability

cannot be used to differentiate it from the trivial product state [6]; we need a finer invariant.

2. Result

In this paper, we define a class of quantum states and an associated matrix S̃, and prove that

S̃ is an invariant under small-depth quantum circuits. The matrix S̃ is motivated by and defined

analogously with the so-called topological S-matrix of anyon theories [5, 7]. We define S̃ using

a Hamiltonian, but prove that it is in fact independent of the Hamiltonian; if two Hamiltonians

H1, H2 have a ground state |ψ〉 in common, then S̃(H1) = S̃(H2). In this sense, our S̃-matrix is

a quantity of the state. Moreover, S̃ is not affected at all by inserting or removing trivial ancilla

qudits. By investigating situations where S̃ can be consistently defined as we deform the state

by quantum circuits, we conclude that any transformation between quantum states with distinct

S̃-matrices must be a quantum circuit of depth that is at least linear in the system’s diameter. The

trivial product state and the toric code state on the sphere have different S̃-matrices, proving that

our invariant is finer than the mentioned local indistinguishability.

The class of states we are considering are ground states of local commuting projector Hamil-

tonians with two extra conditions. The number of spatial dimensions is conventionally restricted

to 2, but it can be naturally generalized. To define the S̃-matrix, we first consider particle type

projectors. They act on an annulus of the lattice, projecting onto states with a definite topological

charge supported in the disk that the annulus encloses. A topological charge is by definition a set

of states that are connected by arbitrary local operator acting on a local region surrounded by the

annulus, which serves a role to separate the charge with other possible excitations. The particle

type projectors are then the central elements of the algebra of operators that leave the annulus

free of excitations. More precisely, let A be the set of all operators supported on an annulus that

commutes with every term ha in the Hamiltonian, and N be the set of all operators O ∈ A such

that O (
∏
ha) = 0, where the product runs over terms ha whose support overlaps with the annulus.

The particle type projectors are the central canonical projectors of the C∗-algebra A/N , supplied

by the Artin-Wedderburn theorem. For the toric code, these particle type projectors are precisely
1
4(I ± X̄)(I ± Z̄), where X̄ and Z̄ are the usual string operators of Pauli matrices. The S̃-matrix
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Figure 1: Two annuli of the same radius on a large plane are intersecting at two diamond-like
regions. The distance between the two diamonds are comparable with the radius of the annuli. P
and Q denote operators supported on the left and right annulus, respectively. In (a), the usual
product P · Q is depicted. The operator on the left is drawn closer to the reader. In (b), the
product Q ·P is shown. In (c), the twist product P∞Q is depicted. The order of the multiplication
is reversed for operator components in the bottom region. S̃ab is defined by 〈ψ|πa∞πb |ψ〉 where
πa and πb are particle type projectors on the left and right annulus, respectively.

is defined by the expectation value of these particle type projectors after a special twist product.

See Fig. 1.

The two extra conditions for the Hamiltonians are as follows. The first one is so-called local

topological order condition, stating that Hamiltonian terms that act on a small disk should uncover

the reduced density matrix of the global ground state for the disk. This condition is elaborated in

the gap stability proof of topological order [8]. The second one is a new one, which we call stable

logical algebra condition, stating that the logical algebra A/N does not depend on the thickness of

the annulus. This seems to be closely related to the condition that there are finitely many particle

types.

3. Overview of the proof

We establish isomorphisms for logical algebras C(H) := A(H)/N (H), where H is a Hamiltonian

satisfying our two conditions. The invariance of S̃ under quantum circuits W follows from C(H) ∼=
C(WHW †), which is rather straightforward. More involved is to establish C(H1) ∼= C(H2) when

H1,2 share a ground state. To this end, we introduce a manifestly Hamiltonian-independent notion

of locally invisible operators. We say an operator O is locally invisible if for any state |φ〉 that has

the same reduced density matrix on a disk D with the global ground state |ψ〉, O |φ〉 has the same

reduced density matrix on the “interior” of the disk D with |ψ〉. That is, the action of O cannot be

locally detected. By factoring out a set M of null operators that annihilate local reduced density

matrices, from the set I of all locally invisible operators on an annulus, we find a sequence of maps

C(H)
ῑ−→ I/M φ̄−→ C(H). Note that I/M is not an algebra in general because the local invisibility

is not a linear condition. Nevertheless, ῑ and φ̄ are inverses of each other, and the composition φ̄ ◦ ῑ
preserves addition and multiplication. We thus obtain an algebra-isomorphism C(H1)→ C(H2).
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