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Abstract

Machine Learning (ML) [1–3] aims to systematically devise algorithms for machines to infer the input-output
relationship of an unknown functional from historic data. More precisely, the key elements in ML are an input space
X (a measurable space); an output space Y (a closed subset of real line), and a collection of functions, denoted
as the hypothesis set F . The learning machine seeks to construct a function f : X → Y ∈ F that approximates
the unknown functional from the training data set {(Xi, Yi)}ni=1, which are randomly and independently drawn
from some measure µ on X × Y. The main focuses of ML are: (i) computational complexity which measures the
efficiency of a learning algorithm; (ii) sample complexity which determines the number of queries to a membership
made by the learning algorithm such that the hypothesis function is Probably Approximately Correct [4]. In other
words, a sample complexity problem investigates how many samples (e.g. the size of the training data set) are
required to bound the generalization error. Denote a loss function l : R× Y → [0,+∞). The generalization error,
defined as the difference between the in-sample error Rn(f) := 1

n

∑n
i=1 l(f(Xi), Yi) and the out-of-sample error

R(f) := Eµl(f(X), Y ), is one of the most popular figures of merit in ML because it indicates how well the training
set can approximate the input space under the function f . Eventually, we are interested in whether a quantity,
denoted as mF (ε, δ), exists such that given n ≥ mF (ε, δ), for every 0 < ε, δ < 1 and any probability measure µ,

Pr

{
sup
f∈F

∣∣R(f)−Rn(f)
∣∣ ≥ ε} ≤ δ.(1)

This quantity mF (ε, δ) is called the sample complexity of the hypothesis set F with accuracy ε and confidence δ.
One of the biggest achievements in ML [5–7] shows that the sample complexity can be characterised by a complexity
measure—fat-shattering dimension, denoted as fatF (ε), which quantifies the “effective size” of the hypothesis set1.
Intuitively, a large fatF (ε) implies a “richer” hypothesis set which is capable of approximating the target function well
but it requires more samples to reduce the generalization error. As a result, the fat-shattering dimension effectively
determines the information-theoretic efficiency of a learning algorithm and the rate of the uniform convergence in
Eq. (1).

Quantum Information Processing (QIP) has achieved significant breakthroughs recently [8], and researchers have
begun to explore whether QIP can advance other subjects of classical computer science. Consequently, the inter-
disciplinary area of quantum machine learning has emerged and attracted substantial interests lately. The central
problems are two-fold. The first kind of problems investigates how quantum machines can serve to accelerate the
classical ML processes to improve the computational efficiency, or to reduce the sample complexity by transforming
classical training data into special sets of quantum states. We call this line of research as Quantum Computational
Learning [9–20]. On the other hand, certain fundamental quantum problems, such as inference of unknown quantum
states or operations (also known as state/process tomography) or the hidden structure of the underlining quantum
system, fits well into the setting of statistical learning theory. We term this line of research as Quantum Statis-
tical Learning [21–29]. The majority of previous works in quantum machine learning focused on computational
issues of a learning algorithm. The issue of sample complexity exhibited in original quantum learning setting, e.g.
state/process tomography, was rarely touched [22].

Any quantum statistical learning problem can be similarly formulated as that in the first paragraph; namely, the
input and output space X and Y could be any subset of Cd×d (instead of Rd in classical ML), and the hypothesis
set F could contain matrix-valued functions. Such a generalization encompasses all system models in previous
works [9–29]. Under this framework, we consider the problem of learning an unknown quantum measurement, and
we mainly focus on learning a two-outcome measurement. For multi-outcome POVMs, the results can be easily

1Given ε > 0, we say a set S = {x1, . . . , xn} ⊆ X is ε-shattered by F if for every subset B ⊆ S there is some function f ∈ F and
constant ci for which f(xi) ≥ ci + ε if xi ∈ B, and f(xi) ≤ ci − ε if xi /∈ B. The fat-shattering dimension is defined to be the largest

cardinality of a ε-shattered set.
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generalized2. Note that each two-outcome measurement is completely characterized by a positive semi-definite
matrix 0 ≤ E ≤ I ∈ Cd×d (will be denoted as E ∈ [0, I]). Equivalently, we can consider the hypothesis set to
be F = {E : E ∈ [0, I]}. We can apply a sequence of quantum states {ρ1, . . . , ρn} (input variables in X ) through
the measurement apparatus. Suppose that the output statistics {Tr(Eρ1), . . . ,Tr(Eρn)} (output variables in Y) is
also available. With the given set of training data {(ρi,Tr(Eρi))}ni=1, our goal is to examine the sample complexity
of this problem, i.e., what is the fat-shattering dimension. Our main result is the following quantification of the
fat-shattering dimension for learning an unknown quantum measurement.

Theorem 1 (Main Result: Fat-shattering Dimension of Learning Quantum Measurements). Assume the hypothesis
set F consists of all possible two-outcome measurements on Cd, i.e., E ∈ [0, I]. For all 0 < ε < 1/2, and d ≥ 2, we
have

fatF (ε) = min{O(d/ε2), d2}.

The key ingredients used in the proof are the powerful classical ML results from Banach space theory [30] (see
Lemma 1) and the noncommutative Khintchine inequalities [31] in Random Matrix Theory (Lemma 2).

Lemma 1 (Mendelson and Schechtman [30]). The set S = {x1, . . . , xn} ⊂ BX is ε-shattered by BX∗ if and only if
{xi}ni=1 are linearly independent and for every a1, . . . , an ∈ R,

ε

n∑
i=1

|ai| ≤

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ,
where BX is the unit ball of some Banach space X and BX∗ is its dual unit ball.

Lemma 2 (Noncommutative Khintchine inequalities [31]). Let {xi}ni=1 be deterministic d × d matrices, each εi
takes {+1,−1}-value uniformly and independently (called Rademacher variable). Then

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

≈p

{ (
‖(
∑n
i=1 xix

∗
i )

1/2‖pp + ‖(
∑n
i=1 x

∗
i xi)

1/2‖pp
)1/p

, if 2 ≤ p <∞
infxi=ai+bi

(
‖(
∑n
i=1 aia

∗
i )

1/2‖pp + ‖(
∑n
i=1 b

∗
i bi)

1/2‖pp
)1/p

, if 1 ≤ p ≤ 2,

where ≈p means that the equality holds up to an absolute constant depending on p.

For technical simplicity, we consider “symmetrization” of the state space and the effect space, which will be
convenient for our derivations in Banach space theory and convex analysis. In other words, the unit ball of Schatten
1-class is the symmetric convex hull of the state space, i.e., Sd1 = conv(−S(Cd) ∪ S(Cd)), where S(Cd) = {ρ : ρ ≥
0,Tr(ρ) = 1} and conv(·) denotes the convex hull operation. Similarly, we have Sd∞ = conv(−E(Cd)∪E(Cd)), where
E(Cd) = {E : 0 ≤ E ≤ I}, and is a dual unit ball of Sd1 . Thus the input space X ⊂ Sd1 and the hypothesis set
F consists of linear functionals with elements in Sd∞. Choose the constants {ai} in Lemma 1 to be {±1}-value
random variables (the Rademacher variables {εi}), then Lemma 2 is applicable. Theorem 1 follows with some direct
algebra. (See supplemental material, Theorem 3.1, for a detailed proof.) We also showed the bound is tight by the
following proposition.

Proposition 1. There exists a set of d quantum states on Cd that can be 1/2-shattered by two-outcome POVMs.

Our investigation of learning an unknown measurement is largely motivated by the problem of learning an
unknown quantum state, pioneered by Aaronson [22], where the training data set is a collection of two-outcome
measurements and the corresponding statistics; namely, {(Ei,Tr(Eiρ))}ni=1. In fact, learning an unknown quantum
state is a dual problem to learning an unknown measurement, rooted from the fact that Sd1 and Sd∞ are dual unit
balls in Banach Space.

Proposition 2 (Duality). Learning quantum measurements and learning quantum states are dual to each other.

Proposition 2 together with Theorem 1 hinted a new proof, completely from known results in classical ML, of
Aaronson’s bound on the sample complexity of learning an unknown quantum state. By using Lemma 1 and the
matrix concentration inequality in Lemma 3, we can re-derive the fat-shattering dimension, stated in Theorem 2
below, for learning quantum states in [22]. Note that Lemma 3 (p = ∞) and Lemma 2 play similar roles in their
respective proofs .

2For the scenario of learning multi-outcome measurements, each POVM element can be considered as a two-outcome POVM. Therefore,

every POVM element can be learned independently.
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Lemma 3 (Rademacher Series [32]). Consider a finite sequence {xi} of deterministic Hermitian matrices with
dimension d, and let {εi} be independent Rademacher variables. Form the matrix Rademacher series Y =

∑
i εixi.

Then

E‖Y ‖∞ ≤
√

2σ2 log d,

where σ2 = σ2(Y ) = ‖E
(
Y 2
)
‖∞ is the variance parameter.

Theorem 2 (Fat-shattering Dimension of Learning Quantum States). Assume the hypothesis set F consists of all
possible quantum states on Cd. For all 0 < ε < 1/2, and d ≥ 2, we have

fatF (ε) = min{O(log d/ε2), d2 − 1}.

Note that Aaronson’s original proof [22] used the entropic inequality from Quantum Random Access (QRA)
Codes [33] to prove fatF (ε) = O(m/ε2) for learning m qubits.
Applications of our results:

• Existence of QRA codes: An (n,m, p)-QRA coding is a mapping that encodes each n-bit string y = y1 · · · yn into
an m-qubit ρy such that there exist two-outcome POVM {Ei}ni=1 satisfying Tr(Eiρy) ≥ p if yi = 1; Tr(Eiρy) ≤ p
if yi = 0 (i.e. {Ei}ni=1 is (p − 1/2)-shattered by ρy). However, the result in Theorem 2 (i.e. fatF (ε) ≤ d2 − 1)
shows that there is no d2 quantum measurements that can be shattered (by the hypothesis of all states). In other
words, there exists no (d2 = 22m,m, p)-QRA coding for p > 1/2, which coincides Hayashi et al.’s result [34].

• Quantum state discrimination: There is an operational interpretation of the fat-shattering dimension in terms
of ambiguous set discrimination [35] as follows. Define a 2ε-separable ensemble, if two arbitrary subsets of the
ensemble can be discriminated with the error probability no greater than 1/2 − ε (e. g. Tr(Eρ) ≤ 1/2 − ε for
a misclassified state ρ by the discriminator E). We show that the fat-shattering dimension fatF (ε) for learning
quantum measurements is equivalent to the maximum cardinality of a 2ε-separable ensemble. In other words,
the fat-shattering dimension guarantees a set of quantum states that can be discriminated into two subsets with
the worst error probability no greater than 1/2− ε.

Efficient implementation of the learning algorithm: Finally, in addition to the theoretical bounds on sample
complexity, we also proposed an efficient implementation of the learning algorithm that works for both learning an
unknown state and measurement. The idea comes from the observation that, when formulating our problems using
general Bloch-sphere representation [36–38], the hypothesis set of rank-k projection-valued measures (PVMs) Fk
can be written as a set of linear functionals, and every POVM element can be decomposed as the convex combination
of rank-k PVMs, k = 1, · · · , d, [39]:

F = conv (F0,F1, . . . ,Fd) = {f : r 7→ 1

d
(n0 + (d− 1)r · n)},

where r is the Bloch vector of a quantum state; n0 and n parameterises the functions in the hypothesis set F
(each [n0,n] corresponds to a two-outcome quantum measurement). Using the language from the theory of neural
network [40], each rank-k PVMs Fk is called a linear perceptron or a single-layer neural network, and F is thus
a two-layer neural network (the two-layer means a linear combination of a set of single-layer networks). Since
the operations of a neural network depend on each computing unit (i.e. linear perceptron), it suffices to tune all
linear coefficients of the network to complete the learning process. As a result, by means of general Bloch-sphere
representation, classical neural network algorithms can be easily applied to perform the quantum ML procedures.

Contributions of our work. We summarize the contributions of this work. First, we start from the standpoint
of statistical learning theory and show that any quantum statistical learning problem can also be formulated using
the standard language of ML. Then, we proved an upper bound for the sample complexity problems for learning an
unknown quantum measurement. The upper bound, given by the fat-shattering dimension, is linearly proportional
to the dimension of the underlining Hilbert space. Second, for learning an unknown quantum state, we show that
it becomes a dual problem to learning an unknown quantum measurement. We provide an alternative proof solely
from classical statistical learning theory, which reproduces Aaronson’s work. Third, by exploiting general Bloch-
sphere representation, we show that our learning problems are equivalent to a neural network so that classical ML
algorithms can be applied to performing this particular quantum ML task. Our work could provide a new viewpoint
to the study of measurement or process tomography. Finally, we discuss connections between the quantum learning
problems and other fields in QIP such as existence of QRA Codes and quantum state discrimination. We hope that
the development of our results would stimulate more theoretical studies in quantum statistical learning and find
more applications in quantum information processing and related areas.
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