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Abstract

To apply network coding for quantum computation, we study distributed implementation of unitary
operations over all separated input and output nodes of quantum networks. We consider a setting of
networks where quantum communication between nodes are restricted to sending just a single qubit,
but classical communication are freely allowed. We analyze which class of N -qubit unitary operations
is implementable over cluster networks by investigating transformations of a cluster network into
quantum circuits. We show that any two-qubit unitary operation is implementable over the butterfly
network and the grail network, which are fundamental primitive networks for classical network coding.
We also analyze probabilistic implementations of unitary operations over cluster networks.

1 Network coding for computation

Distributed quantum computation over multiple spatially separated quantum systems represented by
nodes connected by mediating quantum systems represented by edges, is one of the most promising
candidates for scalable quantum computation. A serious problem for any kind of distributed compu-
tation is the bottleneck problem, which is caused by the collision of several communication pathways
between the nodes. The bottleneck problem worsens as the scale and the complexity of a communi-
cation network grow. Thus it is important to consider how to optimize transmission protocols so that
the amount of quantum communications is reduced. In classical network information theory, network
coding that incorporates processing at each network node in addition to routing provides efficient
transmission protocols that can resolve the bottleneck problem [1].

Quantum communication with quantum network coding has been studied in analogy to classical
network coding [2, 3, 4, 5]. k-pair quantum communication over a network is a unicast communication
task to faithfully transmit a k-qubit state given at distinct input nodes {i1, i2, · · · , ik} to distinct output
nodes {o1, o2, · · · , ok} through a given network. Two examples of 2-pair quantum communication over
the butterfly network and the grail network are shown in Fig. 1. In k-pair quantum communication,
the output state |output〉o1···ok

at the output nodes can be regarded as a state obtained by performing
a k-qubit unitary operation U on the input state |input〉i1···ik given at the input nodes

|output〉o1···ok
= U |input〉i1···ik , (1)

where U is a permutation operation. Without using network coding, both the butterfly network and
the grail network exhibit the bottleneck problem, since one edge must be used twice to achieve 2-pair
quantum communication. In the setting where classical communication is freely allowed between any
nodes, however, it has been shown that there exists a quantum network coding protocol to achieve
2-pair quantum communication deterministically [3, 4, 5].

We do not need to restrict the k-qubit unitary operation U in Eq.(1) to be a permutation operation,
but a general quantum operation. This leads to the idea of network coding for quantum computation,
which aims to perform a quantum operation on a state given at distinct input nodes and to faithfully
transmit the resulting state to the distinct output nodes efficiently over the network at the same time
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Figure 1: i) The butterfly network and ii) the grail network with the input nodes (i1 and i2), output
nodes (o1 and o2) and the repeater nodes (n1, n2, n3 and n4). The directed edges E1, E2, · · · , E9

represent a single-qubit quantum channel. Our task is to transmit a given two-qubit state |input〉i1,i2

from i1 to o2 and from i2 to o1 simultaneously by using a single-qubit quantum channels and local
quantum operations at each nodes.

[6, 7]. By computing and communicating simultaneously, quantum computation over the network may
reduce communication resources in the distributed quantum computation scenario. As a first step to
apply network coding for quantum computation, we investigate a cluster network, which is a special
class of networks that have k input and k output nodes and an example of cluster networks is shown
in Fig. 2 i). The cluster network contains the grail network as its special case. We concentrate on the
setting that classical communication is freely allowed between any two nodes. This setting is justified
in practical situations, where classical communication is much easier to implement experimentally
than quantum communication. In this setting, a protocol for quantum network coding is equivalent to
local operations (at each nodes) and classical communication (LOCC) or stochastic LOCC (SLOCC)
assisted by entanglement given by the Bell pairs shared between nodes connected by edges, which is
shown in Fig. 2 ii). We investigate what class of unitary operations is implementable by LOCC or
SLOCC assisted by the entangled state corresponding to a given cluster network.

2 Results

First, we derive a method to convert a given network into quantum circuits, which are implementable
over the given network by entanglement-assisted LOCC. Examples are given in Fig. 2 and Fig. 3. By
analyzing the quantum circuit presented in Fig. 3, we show that any two-qubit unitary operation is
deterministically implementable over both the butterfly network and the grail network. In previous
works, only two-qubit unitary operations between different nodes had been used in quantum net-
work coding protocols, however, we show that three-qubit unitary operations among three nodes are
necessary for network coding to implement two-qubit unitary operations over the butterfly network.
Next, we show that the set of all the implementable unitary operations over (2, N)-cluster and (3, N)-
cluster network is obtained by using the conversion method. Third, we have analyzed probabilistic
implementations of unitary operations over the cluster network.

3 Concluding remarks

A classical communication task over a general two input-output network is achievable if and only if the
network contains one of primitive subgraphs, which are the butterfly subgraph, the grail subgraph and
trivial paths [10]. The existence of such fundamental primitive subgraphs for quantum computational
tasks has been an open problem. In this work, as a first step to find fundamental primitive subgraphs,
we have shown that both the butterfly and grail networks are sufficient resources for implementing
arbitrary two-qubit unitary operations, meanwhile a (2, 2)-cluster network is not sufficient.
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Figure 2: i) The (3, 4)-cluster network with the input nodes (i1, i2, i3), output nodes (o1, o2, o3) and
6 repeater nodes. The (k, N)-cluster network consists of k input and output nodes connected by
horizontal wires, and N vertical wires. ii) The corresponding Bell pairs. A protocol for quantum
network coding is equivalent to setting the state of input qubits, initializing the state of output qubits
to |0〉, applying (S)LOCC to input qubits, Bell pairs and output qubits, and discarding all the qubits
except output qubits. The grail network is equivalent to a (2, 3)-cluster network. Note that the
entanglement resource for cluster networks is different from the cluster states used for measurement
based quantum computation. iii) A converted quantum circuit consists of parallel three-qubit fully
controlled unitary operations defined by C2 = |00〉〈00|⊗u00+ |01〉〈01|⊗u01+ |10〉〈10|⊗u10+ |11〉〈11|⊗
u11, where uij ∈ SU(2), and single qubit gates represented by small boxes.
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Figure 3: i) The (2, 3)-cluster network, which is equivalent to the grail network, and a converted
circuit, where C1 represents a two-qubit controlled unitary operation. Any two-qubit unitary operation
is deterministically implementable on this converted circuit since the converted circuit can contain
three CNOT gates and three CNOT gates are sufficient to implement arbitrary two-qubit unitary
operations [11]. ii) We can apply our conversion method to the butterfly network with an ancillary
qubit initialized to |0〉, a measurement and corrections corresponding to the shaded region of the
quantum circuit, where C2 represents a three-qubit fully controlled unitary operation defined in the
figure caption of Fig. 2.
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