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1 Introduction

Quantum algorithms are prone to errors during their execution that may alter the outcome considerably. Although
several error correcting schemes have been proposed, they require a considerable overhead in terms of resources.
At this infant stage of quantum computing when only a limited number of qubits can be coherently controlled, a
relevant question to be considered is: How robust is a quantum algorithm against disorders when error correction
is absent?

In this talk, we address this question for the spatial search algorithm formulated as a continuous time quantum
walk (CTQW) and show that it is robust to naturally occurring static errors. This algorithm was first developed
by Childs et al. [1], where the authors show that searching a marked node |w〉, in a highly symmetrical graph
such as a complete graph, can be done in O(

√
N) time. The characteristics that a graph must possess for this

algorithm to run optimally, remains an open question. In fact, in [2], where the authors present a different spatial
search quantum algorithm based on the divide and conquer approach, their main criticism towards the CTQW
version of the spatial search was the fact that an upper bound on the running time is not known, even if “minor
defects are introduced”. Furthermore, all graphs where this algorithm is known to hold optimally are regular, i.e.,
each node of such graphs is connected to an equal number of other nodes [1, 3].

The main contribution of this work is to show that the spatial search algorithm runs optimally not only when
imperfections are introduced but also in non-regular graphs. First, we analytically show that, in the complete
graph, this algorithm is robust to perturbations in the couplings between nodes. These perturbations can be large
enough to amount to some links being broken completely (coupling goes to 0), thereby rendering the graph non-
regular. Furthermore, we demonstrate that the algorithm optimally runs on complete bipartite graphs (CBG),
which are in general, non regular. A particular case of the CBG, is the star graph where N-1 nodes are connected
only to a central node. This is a planar graph, where N-1 nodes have connectivity 1, so it is surprising that the
search works for such low connectivity structures.

At the heart of our analysis is a systematic method to reduce the dimension of the Hamiltonian of the problem,
exploiting its invariant subspaces, which is sufficient to completely capture the relevant dynamics. This simplifies
our analysis considerably for the graphs mentioned above. The method consists of projecting the Hamiltonian to
a subspace of the full Hilbert space which is spanned by the set of states that will couple to the marked state |w〉
throughout evolution. This subspace is defined as the subspace containing |w〉 that is invariant under the action
of the system Hamiltonian, and is known as a Krylov subspace. This reduction method is general and can be used
to simplify the analysis of the quantum dynamics in systems that possess some symmetry. For example, we prove
that this subspace is equal to the subspace spanned by the eigenstates of the Hamiltonian which have a non-zero
overlap with |w〉, referred to as the ‘non-invariant subspace’ in [4] wherein |w〉 is the trapping site where an exciton
gets absorbed in the quantum transport scenario. The calculation of this subspace is important for computing the
transport efficiency in various networks, and for determining whether disorder and decoherence can aid transport
[4, 5]. Our approach provides a simpler method to calculate this subspace which eliminates the need to compute
the eigenstates of the full Hamiltonian. This way, the method is useful also for quantum transport problems.
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Finally, we analyse the performance of the CTQW search algorithm in the presence of disorder in all the
couplings of the complete graph and the star graph. Here, the reduction method does not work because there is
no remaining symmetry and thus we have to rely on numerical results. For a complete graph with 1000 nodes,
disorder in the couplings of up to 10% does not visibly affect the running time (increase of O(10−5)). On the other
hand, for the star graph with the same number of nodes, the same amount of disorder causes an increase in the
running time of about 10%. It is remarkable that the algorithm tolerates such considerable imperfections without
severely affecting its running time. We support the robustness observed numerically with theoretical insights on
why the algorithm is robust in both graphs and why the complete graph is more robust than the star graph.

2 Main results

Hamiltonian reduction: Let |w〉 ∈ H be a quantum state and H ∈ L(H) be the system’s Hamiltonian, of
dimension N . The unitary evolution of the state |w〉 can be expressed as

U(t) |w〉 = exp(−iHt) |w〉 =
∞∑
k=0

(−it)k

k!
Hk |w〉 . (1)

In many cases, if the Hamiltonian is highly symmetrical, only a small numbers of powers of Hk |w〉 are linearly
independent. In general, the idea is to calculate the basis states that span the subspace generated by Hk |w〉 , ∀k >
0. This subspace is the largest possible Krylov subspace [6], denoted by Km(H, |w〉), where m is the dimension of
the subspace which, for Hamiltonians with high symmetry, can be considerably smaller than N . Thus, Km(H, |w〉)
can be defined as the subspace of H which contains |w〉 and is invariant under the action of H. The projection of
the Hamiltonian into this subspace yields a reduced Hamiltonian which captures the relevant dynamics.

k-link perturbation: When one link of the Hamiltonian of a complete graph of N nodes is perturbed, we
obtain a three dimensional effective Hamiltonian after using the reduction process mentioned above. In the
basis {|w〉 , |sn−3〉 , |sij〉} where |w〉 is the solution state, |sij〉 is the equal superposition of the nodes that have
a perturbed coupling v, and |sn−3〉 = 1√

N−3

∑
q 6=i,j,w |q〉 is the equal superposition of the rest of the nodes, the

resulting Hamiltonian is

Hred =

 0
√
N − 3

√
2√

N − 3 N − 4
√

2(N − 3)√
2

√
2(N − 3) v

 . (2)

In the limit of large N , we can use degenerate perturbation theory to show that the search Hamiltonian Hsearch =
−γHred− |w〉 〈w| runs optimally in spite of this perturbation. The critical value of γ = 1/N renders 〈w|H|w〉 and
〈sn−3|H|sn−3〉 degenerate having values -1. The initial state of the algorithm is |ψ0〉 ≈ |sn−3〉, for large N and
Hsearch can be expressed as

Hsearch = H +Hpert =

 −1 1/
√
N 0

1/
√
N −1

√
2/N

0
√

2/N 0

 +O(
1

N
). (3)

The running time depends on the difference of the two lowest eigenvalues which are E± = −1 ± 1/
√
N and is

T = π
√
N

2 .
Another example that is analytically treatable with this approach, is when k links are removed from the graph

such that, for each node, at most one link connecting to this node is removed. Let Ωk be the set of all nodes
from which a link was broken. For simplicity, we do not consider the possibility of breaking a link connected to
|w〉. The reduction procedure yields that the dynamics is restricted to the states |w〉, the equal superposition of
all nodes that correspond to a broken link |sk〉 = 1√

2k

∑
ij∈Ωk

|ij〉 and the equal superposition of all other nodes

|sk̄〉 = 1√
N−2k−1

∑
l /∈Ωk∪{w} |l〉. In the basis {|w〉 , |sk̄〉 , |sk〉} the reduced Hamiltonian can be written as:

Hred =

 0
√
N − 2k − 1

√
2k√

N − 2k − 1 N − 2k − 2
√

2k(N − 2k − 1)√
2k

√
2k(N − 2k − 1) 2k − 2

 (4)
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Figure 1: Plot of fractional increase in running time versus the standard deviation of errors in the couplings
complete graph and the star graph.

Since none of these states can, in general, be approximated to the initial superposition of states |s〉, we do a unitary
transformation, similar to [3], to the basis B = {|w〉 , |r〉 , |r⊥〉}. Here, |r〉 is defined as |r〉 = 1√

N−1

∑N
q=1;q 6=w |q〉

i.e., the equal superposition of all nodes of the graph except the solution and |r⊥〉 is a state orthogonal to |r〉 and
|w〉. Using the same critical value for γ = 1/N , the search Hamiltonian is similar the complete graph and the
effects of broken links is shown to be an effect of O(1/N). Thus, we obtain the same running time within this
approximation.

Spatial search on complete bipartite graphs: A complete bipartite graph G(V1, V2, E) has two sets of vertices
V1 and V2 such that each vertex of V1 is not connected to any other vertex in V1 and is connected to all vertices
of V2 and vice-versa. This set of graphs is also denoted as Km1,m2 , where m1 = |V1| and m2 = |V2| and we have
m1 + m2 = N . This is a non-regular graph, as long as m1 6= m2. We show that the dynamics can be restricted
to a 3 dimensional subspace and, defining m1 = αN and m2 = (1 − α)N , we obtain the expected running time
T = π

√
N(1 + 2

√
α(1− α))1/2. In the particular case where m1 = N − 1 and m2 = 1 we have a star graph which

is a planar structure. One of the N − 1 nodes of degree 1 holds the solution. It is surprising that even in such a
simple structure, search is optimal. Furthermore, we show analytically that search is robust up to order O(k/N)
where k is the number of affected links, assuming that the link containing the solution node is not broken. This
happens with probability O(1/N), which is low for large N .

Numerical results on robustness of complete graph and star graph: We numerically study the effect of
introducing errors in all the couplings of a complete graph and a star graph, sampled from independent Gaussian
distributions with mean 0 and standard deviation σ. In Fig. 1a, the increase in running time for the complete
graph is plotted against the standard deviation in the disorder of the couplings. We observe that this structure is
robust and this robustness, remarkably increases on increasing the number of nodes. In the case of a star graph,
the robustness is not as strong as that of the complete graph as shown in Fig. 1b. However, as in the complete
graph, it gets more robust on increasing the number of nodes. The robustness is considerable (the running time
increases by only 10% ) given its low connectivity and simplicity. Theoretically, the effect of the perturbation on
the running time is proven to be O(σ2/N) for a complete graph and O(σ2/

√
N) for a star graph, thereby justifying

the observed results.

3 Conclusions

We could analytically and numerically show that a continuous time quantum algorithm is robust against consid-
erable perturbations. This is the first example where an algorithm has been shown to be robust in this paradigm.
Furthermore, we reveal that the spatial search algorithm can optimally run even on non-regular graphs. This
paves the way for future analysis of the robustness of other continuous time algorithms where error correction is
absent. The method to systematically reduce the Hamiltonian dimensions can have varied applications ranging
from analysis of continuous time quantum algorithms to quantum transport. This work will appear on arXiv soon.
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