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Non-classical correlations between measurement results make entanglement the essence of quan-
tum physics and the main resource for quantum information applications. However, there are
n-particle states which do not exhibit n-partite correlations at all but still are genuinely n-partite
entangled. We introduce a general construction principle for such states, implement them in a
multi-photon experiment and analyze their properties in detail. Remarkably, even without n-partite
correlations, these states do violate Bell inequalities showing that there is no local realistic model
describing their properties.

Correlations between measurement results are the most prominent feature of entanglement. Correlations made
Einstein, Podolski and Rosen [1] to question the completeness of quantum mechanics, and are nowadays the main
ingredient for the many applications of quantum information like entanglement based quantum key distribution [2]
or quantum teleportation [3].

For example, when observing two maximally entangled qubits, correlations enable us to use the measurement result
observed on the first system to infer exactly the measurement result on the second system (for the corresponding
basis). In this scenario the two particle correlations are formally given by the expectation value of the product of the
measurement results obtained by the two observers. Note, the single particle correlation, i.e. the expectation value
of the results for one or the other particle are zero in this case, that means we cannot predict anything about the
individual results. When studying the entanglement between n particles a natural extension is to consider n-partite
correlations, i.e. the expectation value of the product of n measurement results. Such n-partite correlation functions
are frequently used in classical statistics and signal analysis [4, 5] and are omnipresent in multi-party entanglement
witness [6–11] and Bell inequalities [12–22]. The quantum mechanical correlation function is defined as

Tj1...jn = 〈r1 . . . rn〉 = Tr(ρ σj1 ⊗ · · · ⊗ σjn),

where rk is the outcome of the local measurement of the k-th observer, parametrized by the Pauli operator σjk .
Recently, Kaszlikowski et al. [23] pointed at a particular quantum state
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FIG. 1. Experimental tripartite correlations
for |W 〉 and |W 〉 and ρ

nc,exp

W
(red) in compari-

son to the theoretically expected values (grey).
The plot presents measured values of Tj1j2j3

for the observables listed below the plot. Ob-
viously, the states |W 〉 and |W 〉 have oppo-
site tripartite correlations canceling each other
when the states are mixed with equal weights.
Note, that the the scale for the state ρ

nc,exp

W

is magnified by a factor of 10.

with vanishing multiparty correlations which, however, is genuinely multi-
partite entangled. This discovery, of course, prompted vivid discussions on
the differences between classical and quantum correlations [23–31]. It seems
that for entangled states the standard, n-partite correlation function is not
sufficient to fully describe the many features of entangled multi-party states
[26]. Still, the question arises, what makes up such states without mul-
tipartite correlations and also how nonclassical they can be, i.e., whether
they are not only entangled but whether their entanglement suffices to even
violate a Bell inequality.

Here we generalize, highlight and experimentally test such remarkable
quantum states. Starting from the state given in [23]:

ρncW =
1

2
|W 〉〈W | +

1

2
|W̄ 〉〈W̄ |, (1)

where |W 〉 = (|001〉 + |010〉 + |100〉)/
√

3 is the well known three qubit W
state, we describe a simple principle how to construct quantum states with-
out n-partite correlations for odd n, and show that, indeed, they can be
genuinely n-partite entangled. To this end, we introduce a general concept
of “anti”-states. We implement such states in a multi-photon experiment
and analyze the obtained measurement results, also in perspective to the
comments raised recently. We find that even if these states do not exhibit



2

n-partite correlations, the existence of correlations between a smaller num-
ber of particles enables their unique properties. Finally, using our recently
introduced method to design multi-party Bell inequalities [32] we can show
that these states, despite not having full correlations, can violate Bell in-
equalities.
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