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I. OVERVIEW

We determine the exact strong converse exponent of classical-quantum channel coding, for every rate
above the Holevo capacity. Our form of the exponent is an exact analogue of Arimoto’s exponent, given as
a transform of the Rényi capacities of the channel with parameters α > 1.

It is important to note that, unlike in the classical case, there are (infinitely) many inequivalent ways to
define the Rényi divergence of quantum states, and hence the Rényi capacities of channels. Our exponent is
in terms of the Rényi capacities corresponding to a version of the Rényi divergences (denoted by D∗α here)
that has been introduced recently in [13] and [19]. These Rényi divergences have been shown to be the
natural quantifiers of the strong converse trade-off relations in various binary hypothesis testing problems
[4, 8, 11]. Our result proves that this distinguished role of the D∗α-divergences is not restricted to hypothesis
testing problems, and supports the expectation that it might hold in any information theoretic problem with
two competing operational quantities and a well-defined strong converse region.

It is known that, at least in the problem of binary state discrimination, a different notion of Rényi
divergence (denoted by Dα) is needed to quantify the trade-off relations in the direct domain [3, 6, 15], and
it is expected that these two versions, Dα and D∗α, are sufficient to describe the full trade-off curve in a large
variety of coding problems. In this work, however, we show that there is at least one more quantum Rényi
divergence (denoted by D[

α) that is worth considering when extending classical information theoretic results
to the quantum domain. Its importance stems from the fact that classical divergence sphere-optimization
forms of optimal exponents translate naturally to expressions in terms of the D[

α-divergence instead of the
correct divergence Dα or D∗α. Although the resulting exponents are suboptimal in the quantum setting,
they may be asymptotically convertible to the right exponents, as we demonstrate on the present example
of classical-quantum channel coding.

This submission is based on [12].

II. MAIN RESULT

A classical-quantum channel W is defined by a map W : X → S(H), where X is an arbitrary set
and S(H) is the set of density operators on a Hilbert space H. n uses of the channel is described by
W⊗n(x) := W (x1) ⊗ . . . ⊗ W (xn), x = x1 . . . xn ∈ X n. A code Cn for n uses of the channel consists of
an encoding φn : {1, 2, . . . ,Mn} → X n of messages into sequences of input signals, and a decoding POVM
Dn = {Dn(k)}Mn

k=1 on H⊗n. The size of the code is |Cn| := Mn. The average success and error probabilities
of the code are

Ps(W
⊗n, Cn) =

1

Mn

Mn∑
k=1

TrW⊗n(φn(k))Mn(k) and Pe(W
⊗n, Cn) = 1− Ps(Φn,W

⊗n).
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The capacity C(W ) of the channel is the largest rate lim infn→+∞
1
n log |Cn| that can be achieved by

a sequence of codes {Cn}n such that limn→+∞ Pe(W
⊗n, Cn) = 0. According to the Holevo-Schumacher-

Westmoreland (HSW) theorem [9, 18], C(W ) = χ(W ) := maxP∈P(X ) χ(W,P ), where P(X ) is the set

of finitely supported probability distributions on X , and χ(W,P ) := minσ∈S(H)D(W(P )‖P̂ ⊗ σ) is the
Holevo quantity. Here, {|x〉}x∈X is an orthonormal system in some auxiliary Hilbert space HX , W(P ) :=∑

x∈X P (x)|x〉〈x| ⊗W (x) is a classical-quantum state between the input and the output of the channel, and

P̂ :=
∑

x P (x)|x〉〈x|.
It is known that for any rate R above the capacity, the success probability goes to 0 with an exponential

speed [16, 20]; this is called the strong converse property. The strong converse exponent Rc(R,W ) is the
optimal rate of this exponential decay, i.e.,

Rc(R,W ) := inf

{
r

∣∣∣∣ ∃{Cn}n∈N s.t. lim inf
n→∞

1

n
log |Cn| ≥ R and lim inf

n→∞

1

n
logPs(Cn,W⊗n) ≥ −r

}
.

Our main result is the following expression for the strong converse exponent:

Theorem II.1 For every R > 0,

Rc(R,W ) = sup
α>1

α− 1

α

{
R− sup

P∈P(X )
χ∗α(W,P )

}
, (1)

where χ∗α(W,P ) is a generalized Holevo quantity defined below.

III. QUANTUM RÉNYI DIVERGENCES AND CAPACITIES

For non-commuting operators on a Hilbert space H, various inequivalent generalizations of the Rényi
divergences have been proposed. Here we will use the Rényi divergences built on the quantities

Qα(ρ‖σ) := Tr ρασ1−α, Q∗α(ρ‖σ) := Tr
(
ρ

1
2σ

1−α
α ρ

1
2

)α
, Q[α(ρ‖σ) := Tr eα log ρ+(1−α) log σ, (2)

defined for every positive definite ρ, σ, and every α ∈ (0,+∞) \ {1}. We can extend these definitions for

semidefinite operators ρ and σ by Q
{x}
α (ρ‖σ) := limε↘0Q

{x}
α (ρ+ εI‖σ + εI), where {x} = { }, {x} = {∗} or

{x} = {[}. The corresponding quantum Rényi divergences are then defined as

D{x}α (ρ‖σ) :=
1

α− 1
logQ{x}α (ρ‖σ)− 1

α− 1
log Tr ρ.

The Araki-Lieb-Thirring inequality [2, 10] yields that D∗α ≤ Dα, and here we prove that

Dα ≤ D[
α, α ∈ [0, 1), and D[

α ≤ D∗α, α > 1.

Note that Dα is the traditional notion of quantum Rényi divergence that features in the Hoeffding bound
theorem [3, 6, 15]. D∗α has been introduced recently in [13, 19], and has found operational interpretation
in the strong converse part of various hypothesis testing problems [4, 8, 11]. D[

α doesn’t seem to have been
much studied in information theory so far, although it is relevant in information geometry [1], and is also
related to the free energy in some problems in statistical physics [17]. We prove the following variational
representation, which is the main reason for the relevance of D[

α for our purposes, and from which many
important properties (e.g., convexity in σ) follow immediately:

Theorem III.1 For every ρ, σ ∈ L(H)+ with non-orthogonal supports, and every α ∈ (0,+∞) \ {1},

D[
α(ρ‖σ) = sup

τ∈S(H)

{
D(τ‖σ)− α

α− 1
D(τ‖ρ)

}
. (3)
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For a quantum channel W : X → S(H) and a probability distribution P ∈ P(X ), we define the generalized

Holevo quantities, corresponding to each Rényi α-divergence D
{x}
α , as

χ
{x}
α,1 (W,P ) := min

σ∈S(H)
D{x}α (W(P )‖P̂ ⊗ σ) =

1

α− 1
log min

σ∈S(H)

∑
x

P (x)Q{x}α (W (x)‖σ). (4)

IV. MAIN STEPS OF THE PROOF

It is fairly easy, following Nagaoka’s method [14], to show that

Rc(R,W ) ≥ sup
α>1

α− 1

α

{
R− sup

P∈P(X )
χ∗α(W,P )

}
. (5)

Hence, the real challenge lies in proving the converse inequality. We first extend a result of Dueck and Körner
[5] to classical-quantum channels, and show that

Rc(R,W ) ≤ F (P,R,W ) := inf
V
{D(V(P )‖W(P )) + max{0, R− χ(V, P )}} ,

where the infimum is taken over all channels V : X → S(H). Next, we show that for any P ∈ P(X ),

F (P,R,W ) = sup
α>1

α− 1

α

{
R− inf

σ∈S(H)

∑
x∈X

P (x)D[
α(W (x)‖σ)

}
,

where infσ∈S(H)

∑
x∈X P (x)D[

α(W (x)‖σ) is a variant of the generalized Holevo quantity χ[α. This can be

changed to χ[α after taking the infimum in P :

inf
P∈P(X )

F (P,R,W ) = sup
α>1

α− 1

α

{
R− inf

σ∈S(H)
χ[α(W,P )

}
.

This, however, is a suboptimal bound. To obtain the desired bound, we apply the above argument to
EmW⊗m, where Em is the pinching of W⊗m with respect to a universal symmetric state [7]. We show that

χ[α(EmW⊗m, P⊗m) ≥ mχ∗α(W,P )− 3 log vm

for every P ∈ P(X ), where limm→+∞
1
m log vm = 0. Taking the block size m to infinity then yields the

converse to the inequality in (5).
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