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Bill Fefferman† Chris Umans‡1 Introduction

A line of work initiated by Terhal and DiVincenzo [TD02], and Bremner, Jozsa and Shepherd [BJS10] shows that restricted
classes of quantum computation can efficiently sample from distributions that cannot be exactly sampled classically unless the
PH collapses. The analogous result for decision problems, establishing BQP 6⊂ BPP unless the PH collapses, would be a
crowning achievement in quantum complexity theory.

Recently there has been a focus on approximate sampling problems, with the hope of exhibiting a distribution that can be
efficiently sampled quantumly but cannot be even “approximately sampled” classically. This focus is motivated both experimen-
tally, where it seems unreasonable to expect any physical manifestation of the quantum computer itself to sample exactly from
its distribution, and theoretically, where it has been established by Aaronson [Aar10] that such an approximate hardness result
implies the existence of a search problem that can be solved efficiently by a quantum computer but cannot be efficiently solved
classically.

Toward this end, Aaronson and Arkhipov [AA13] gave an example of a distribution that can be sampled efficiently by a partic-
ular limited form of quantum computation, and which, assuming the validity of two feasible conjectures, cannot be approximately
sampled classically (even by a randomized algorithm with a PH oracle), unless the PH collapses.

In this work we describe a general class of distributions, derived in a natural way from polynomials encoding (presumed) hard
problems (of which Permanent is but one example) that can be sampled exactly by a quantum computer, but cannot be approxi-
mately sampled classically unless the PH collapses, under variants of the Aaronson-Arkhipov conjectures. Our distributions are
described relative to a (presumed) hard polynomial.

This class of polynomials contains the Permanent but also includes, for example, the Hamiltonian Cycle polynomial and many
others. We prove our main result by showing that a classical approximate sampler implies an average-case approximation to any
such “Efficiently Specifiable” polynomial inside the PH. Since our distribution likely requires the full power of universal quan-
tum computation, while the Aaronson-Arkhipov distribution uses only linear optical quantum computation with noninteracting
bosons, why is this result interesting? We can think of at least three reasons:

1. Since the conjectures required in [AA13] have not yet been proven, it seems worthwhile to weaken them as much as
possible. We do this in two ways, by weakening both conjectures to apply to any “Efficiently Specifiable” polynomial (see
Definition 1), and by weakening the so-called Anti-Concentration conjecture so that it need only hold for one distribution
in a broad class of distributions.

2. Our construction can be understood without any knowledge of linear optics. While this may be a disadvantage for ex-
perimentalists, in our opinion it results in a very clean and simple exposition that may be more immediately accessible to
computer scientists.

3. It is extremely common for quantum computations to employ “Quantum Fourier Sampling” in the following way: first apply
a classically efficient function to a uniform superposition of inputs, then apply a Quantum Fourier Transform followed by
a measurement. Our distributions are obtained in exactly this way, where the classically efficient function is related to a
(presumed) hard polynomial. Establishing rigorously a robust sense in which the central primitive of Quantum Fourier
Sampling is classically hard seems a worthwhile goal in itself.

2 Efficiently Specifiable Polynomial Sampling on a Quantum Computer

In this section we describe a general class of distributions that can be sampled efficiently on a Quantum Computer. These
distributions will form the basis of our main result.

Definition 1 (Efficiently Specifiable Polynomial). We say a multilinear homogenous n-variate polynomial Q with coefficients in
{0, 1} and m monomials is Efficiently Specifiable if there is an efficiently computable, one-to-one function h : [m] → {0, 1}n,
with an efficiently computable inverse, and:

Q(X1, X2..., Xn) =
∑
z∈[m]

X1
h(z)1X2

h(z)2 ...Xn
h(z)n .

The class of Efficiently Specifiable polynomials contains the Permanent, the Hamiltonian Cycle polynomial, and other familiar
#P-hard polynomials.
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Definition 2 (DQ). Suppose Q is an Efficiently Specifiable polynomial with n variables and m monomials. We define distribution
DQ over binary strings y by:

Pr
DQ

[y] =
Q((−1)y1 , . . . , (−1)yn)2

2nm
.

Theorem 3 (Quantum Sampling Theorem). Given a polynomial Q, with n variables, m monomials, that is Efficiently Specifiable
via a function h, the distribution DQ can be sampled in poly(n) time on a Quantum Computer.

Proof. We think of our quantum computer as having two registers, the first with logm qubits and the second with n qubits.
• We start in a uniform superposition over the first register: 1√

m

∑
z∈[m]

|z〉|0..0〉.

• Because h and h−1 are efficiently computable we can prepare 1√
m

∑
z∈[m]

|h(z)〉, by querying h with the first register as

input and the second as output, and then h−1 with the second as input and the first as output, and then by discarding the
first register.

• Apply H⊗n, the Quantum Fourier Transform over Zn2 , to obtain:
1√
2nm

∑
y∈{0,1}n

∑
z∈[m]

−1〈y,h(z)〉|y〉

Notice that the squared amplitude of basis vector y in the final state after Step 3 equals the the probability of y underDQ.1

3 Classical Hardness of Efficiently Specifiable Polynomial Sampling

We are interested in demonstrating the existence of a distribution that can be sampled exactly by a uniform family of quantum
circuits, that cannot be sampled approximately classically. Thus the object we wish to rule out is a Sampler, defined next, which
is a classical algorithm that approximately samples (in total variation distance) from a given class of distributions.

Definition 4 (Sampler). Let {Dn}n>0 be a family of distributions where each Dn is distributed over Cn.
We say S is an (r, ε)-Sampler with respect to {Dn} if ‖S(0n, x ∼ U{0,1}r(n) , 01/ε(n))−Dn‖ 6 ε(n) and S runs in (classical)

polynomial time.

As in [AA13], our main technical result is that an approximate sampler forDQ in the above sense implies an efficient average-
case, approximate computation of |Q|2 in the PH, which represents a classical hardness consequence in the case that computing
|Q|2 in this fashion is #P-hard. The proof uses Stockmeyer’s Algorithm for approximate counting with an NP oracle [Sto85].
We say that a computation of |Q|2 is δ-average-case if it succeeds on all but a δ fraction of the inputs x drawn from a specified
input distribution, and that it is ε-approximate if when it succeeds, the output value is within ε of the true value, |Q(x)|2. This
error may be additive or multiplicative (i.e. relative), and we distinguish between these two cases by saying additive-approximate
or multiplicative-approximate.

Theorem 5 (Main). Given an Efficiently Specifiable polynomial Q with n variables and m monomials, and an (poly(n), εδ)-
Sampler S with respect to DQ, there is a randomized (εm)−additive approximate O(δ)−average case solution to |Q|2 function
with respect to the input distribution U{±1}n , that runs in randomized time poly(n, 1/ε, 1/δ) with access to an NP oracle.

If σ2 is the variance of the distribution induced by evaluating the polynomial Q with m monomials at a uniformly distributed
±1-vector (it is easy to calculate σ2 = m) then Theorem 5 promises us we can achieve an εσ2-additive approximation to |Q|2,
given a classical Sampler for DQ. The next conjecture asserts, essentially, that the Chebyshev inequality in this setting is tight.

Conjecture 1 (Anti-Concentration Conjecture relative to an n-variate polynomial Q and distribution D over Cn). There exists a
polynomial p such that for all n and δ > 0,

Pr
X∼D

[
|Q(X)|2 < Var [Q(X)]

p(n, 1/δ)

]
< δ

If this conjecture holds with respect to any particularQ and any particular input distributionD considered in this paper (either
the uniform distribution on ±1 vectors discussed in this section, or the binomial distribution considered in the next section), then
the additive approximation in Theorem 5 can be replaced with a multiplicative approximation that is more natural when trying to
establish #P-hardness for average-case, approximate, computation of |Q|2.

Theorem 6. Suppose Conjecture 1 holds relative to an Efficiently Specifiable polynomial Q and an input distribution D, and let
X be a random variable distributed according to D. If there is an efficient εVar [Q(X)]-additive approximate δ-average case
solution to |Q|2 with respect to D, then there is an efficient ε′-multiplicative approximate δ′-average case solution to |Q|2 with
respect to D, for ε′ = poly(n) · ε and δ′ = 2δ. In both cases “efficient” means randomized time poly(n, 1/ε, 1/δ) with access to
an NP oracle.

If Conjecture 1 holds with respect to some Efficiently Specifiable polynomial Q and the input distribution of random ±1
vectors, then establishing the following hardness result, which seems plausible when Q is a #P-hard function, would be all that
is needed to conclude that there is a distribution that can be efficiently quantumly sampled, but that cannot be even approximately
sampled classically, unless the PH collapses.

1We also note that by replacing H⊗n with the Quantum Fourier Transform over Zn
` and qudits of dimension `, we can sample from a distribution with

probabilities proportional to Q evaluated at n-tuples of `-th roots of unity.



Conjecture 2 (Classical Hardness Conjecture). There exists some Efficiently Specifiable polynomial Q on n variables so that
ε-multiplicative δ-average case approximation to |Q|2 with respect to the input distribution of random ±1 vectors cannot be
computed in classical randomized time poly(n, 1/ε, 1/δ) with a PH oracle.

Finally, we note that it is interesting to compare Conjecture 1 to the following result of Tao and Vu regarding the Permanent:

Theorem 7 (Tao & Vu [TV08]). For all ε > 0 and sufficiently large n,

Pr
X∈{±1}n×n

[
|Permanent[X]| <

√
n!

nεn

]
<

1

n0.1

This comes quite close to our conjecture for the case of the Permanent polynomial. To our knowledge this bound has not
been established for the Gaussian random matrix ensembles considered in [AA13], although as stated there the two distributions
should intuitively have similar properties.

4 Distributions Involving Integer Evaluations of Efficiently Specifiable Polynomials

One of the challenges that arises in trying to prove Conjecture 2 is executing a worst-case to average-case reduction for functions,
such as the ones considered in this paper, that are not defined over finite fields. To allow for the possibility of mimicking some
of the ideas used in such reductions over finite fields (and to obtain the hardness results of [AA13] concerning exact average case
solutions), it seems useful to consider input distributions beyond those that are uniform ±1 in each coordinate. In this section
we consider input distributions whose support (in each coordinate) is the set of integers in [−k, k], for polynomially bounded k.
We do this by means of a reduction: we show a simple way to take an Efficiently Specifiable polynomial with n variables and
create another Efficiently Specifiable polynomial with kn variables, in which evaluating this new polynomial at {−1,+1}kn is
equivalent to evaluation of the old polynomial at [−k, k]n.

Definition 8 (k-valued equivalent polynomial). For an Efficiently Specifiable polynomial Q with m monomials and an integer
k > 0, consider the polynomial Qk : {±1}kn → R defined by substituting for each variable xi in Q the sum of k new variables
x
(1)
i + x

(2)
i + ...+ x

(k)
i . We will call Qk the k-valued equivalent polynomial with respect to Q.

Note that a uniformly chosen ±1 assignment to the variables in Qk induces an assignment to the variables in Q distributed
according to the following distribution:

Definition 9 (Distribution B(0, k)). For k an even integer, we define the distribution B(0, k) over [−k, k], so that:

Pr
B(0,k)

[y] =

{
( k
(k+y)/2)

2k
if y is even

0 otherwise

We remark that as k grows B(0, k) gets closer and closer to the Gaussian distribution with mean 0 and variance 1, which is
the distribution considered in [AA13]. In the next two theorems we obtain analogous results to the previous section with respect
to the distribution B(0, k); the proofs are not entirely analogous however, and require some new ideas.

Theorem 10 ( ±k-valued Quantum Sampling Theorem). Given an Efficiently Specifiable polynomial Q with n variables and m
monomials, letQk be its k-valued equivalent polynomial. We can quantumly sample from the distributionDQk

in time poly(n, k).

Theorem 11 (Classical Consequences Theorem for k-valued sampling). Let Var [Q(X)] = Var [Q(X1, X2, ..., Xn)] denote the
variance of the distribution induced by Q with assignments drawn from the distribution B(0, k)n. If there is a (poly(n), εδ)-
Sampler with respect to DQk

, then there is a randomized εVar [Q(X)]-additive approximate O(δ)-average case solution to |Q|2
with respect to input distribution B(0, k)n that runs in time poly(n, 1/ε, 1/δ) with access to an NP oracle.

As before, Theorem 6 gives us multiplicative approximation if Conjecture 1 holds. As a consequence, under an analogue
of Conjecture 2 for the distribution B(0, k), we would obtain the desired distribution that can be quantumly sampled but not
classically approximated. As noted, Conjecture 2 might be easier to prove with respect to the B(0, k)n input distribution.

5 Sampling using the “Squashed QFT”

Our final result concerns the input distribution of the previous section, but with k as large as exp(n). Given an Efficiently
Specifiable polynomial Q with n variables, and its k-valued Equivalent Polynomial Qk, using the prior quantum algorithm of
Section 2 we need to invoke the QFT over Zkn2 , which requires k 6 poly(n). Can we handle values of k as large as exp(n)? Note
that of the 2kn possible {±1} assignments to Qk , there are only kn distinct evaluations. Interestingly, we can take advantage of
these massive symmetries, by defining a new unitary operator that can be derived from the standard Quantum Fourier Transform
over Zn2 . We call this the “Squashed QFT”. In our paper, we describe the unitary matrix which implements the Squashed QFT,
and show how to use it to sample from distributions whose probabilities are proportional to [−k, k]n evaluations of Efficiently
Specifiable polynomials, for k 6 exp(n). Using this construction, and assuming the existence of an efficient quantum circuit for
this unitary (which we leave as an open question), we can weaken Conjecture 2:

Conjecture 3 (Weakened Classical Hardness Conjecture). There exists some Efficiently Specifiable polynomialQ on n variables,
and k 6 exp(n) so that ε-multiplicative δ-average case approximation to |Q|2 with respect to the input distribution B(0, k)n
cannot be computed in classical randomized time poly(n, 1/ε, 1/δ) with a PH oracle.

Recall that together with Conjecture 1 this average-case approximate hardness would yield the desired distribution, one that
can be efficiently quantumly sampled but not classically approximated.
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