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Every quantum gate can be decomposed into a sequence of single-qubit gates and Controlled-

not (C-not) gates [1]. In many implementations, single-qubit gates are relatively ‘cheap’ to

perform compared to C-nots, (for example, single-qubit gates may be technically simpler to con-

struct, or less susceptible to noise). It is hence desirable to minimize the number of C-not gates

required to implement a circuit.

Previous work has looked at C-not-efficient synthesis of arbitrary quantum gates and state

preparation (see for example [2, 3] and references therein). Here we consider the generalization

to arbitrary isometries from m qubits to n qubits. We derive a theoretical lower bound on the

number of C-not gates required to decompose an isometry for arbitrary m and n, and give an

explicit gate decomposition that achieves this bound up to a factor of about two in the leading

order. We also perform some bespoke optimizations in the case of small m and n.

Experimental groups strive to demonstrate their ability to control a small number of qubits,

and the ultimate demonstration would be to the ability to do any quantum operation on them.

Since any such operation can be implemented via an isometry followed by partial trace (using

Stinespring’s theorem), our decomposition scheme for isometries points towards an efficient way

to synthesize quantum operations (complementing an existing approach [4, 5]), and could also be

used in the construction of arbitrary POVMs.

A quantum gate on n qubits can be represented by a 2n × 2n unitary matrix. In the case of

state preparation we only need to rotate one input state (conventionally |0〉⊗n) to the state we are

trying to prepare. The sequence of gates we use to do this will correspond to a general unitary

matrix, but, for state preparation, we are only interested in the first (working in the computational

basis) column of this matrix and the others can be arbitrary. In the more general case, n − m

qubits start in the basis state |0〉 and the state of the other m qubits is arbitrary. Mathematically,

this corresponds to an isometry from m qubits to n qubits or alternatively we can think of such

an operator as a unitary 2n × 2n matrix, where we are only interested in the first 2m columns.

A parameter counting argument has been used to find a theoretical lower bound on the number

of C-not gates required to implement arbitrary quantum gates [6, 7] and for state preparation [3],

and is readily extended to the case of isometries (see Table I). In the case of synthesis of arbitrary
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TABLE I: Best known C-not counts for m to n isometries for large n and lower bounds. As is to be
expected, the number of required C-not gates increases if m increases. Or in other words, the cost of the
computation is found to be lower when more of the input data is fixed. Abbreviations: LB: Lower bound;
CCD: Column by Column Decomposition of an isometry (our first technique); CSD: Decomposition of an
isometry using the Cosine-Sine Decomposition (our second technique).

quantum gates, the minimum number of C-not gates is achieved using a powerful matrix decom-

position, the Cosine-Sine Decomposition (CSD) [2]. This states that every 2n × 2n unitary matrix

U can be decomposed into 2n−1 × 2n−1 unitaries A0, A1, B0, B1 and real diagonal matrices C and

S satisfying C2 + S2 = I as follows (in both matrix and circuit form):

U =

 B0

B1

 C −S

S C

 A0

A1

 U

Ry

=
n− 1 \ \ A B

The backslash in the circuit equivalence denotes that the second wire carries n − 1 qubits and

the unfilled square denotes a uniform control, e.g. the first gate on the right hand side of the

circuit equivalence performs the operation A0 if the upper qubit is in the state |0〉 and A1 if it is

in the state |1〉 (cf. [2] for more details). In [2], it is shown how this can be used to achieve the

C-not count in the final column of Table I, roughly twice the lower bound. This technique also

corresponds to a simple and constructive proof of the universality of single-qubit and C-not gates.

In the case of state preparation the best known decomposition [3] has been found using the

Schmidt decomposition, and the resulting count is again about twice that of the theoretical lower

bound (see the first column of Table I).

We introduce a decomposition scheme for an arbitrary isometry V from m to n qubits using

about twice the number of C-not gates required by the theoretical lower bound for large n (anal-

ogously to the best known decompositions for arbitrary quantum gates and for state preparation).

Our decomposition generates the isometry column by column. Note that V can be described by

a 2n × 2m matrix, which can instead be represented by a 2n × 2n unitary matrix G† by writing

V = G†I2n×2m , where I2n×2m denotes the first 2m columns of the 2n × 2n identity matrix. Note

that G† is not unique (unless m = n).

We decompose a gate of the form G† in terms of C-nots and single-qubit gates. Since a C-

not gate is inverse to itself and the inverse of a single-qubit gate is another single-qubit gate,
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this is equivalent to an analogous decomposition of a quantum gate G satisfying I2n×2m = GV .

Our technique works by constructing a sequence of unitary matrices that when applied to V

successively bring it closer to I2n×2m . We do this in a column by column fashion, first choosing a

sequence of quantum gates, corresponding to G0 that get the first column right, i.e., G0V |0〉⊗m =

I2n×2m |0〉⊗m = |0〉⊗n. We then use G1 to get the second column right without affecting the first, i.e.,

G1G0V (|0〉⊗(m−1)⊗|1〉) = I2n×2m(|0〉⊗(m−1)⊗|1〉) = |0〉⊗(n−1)⊗|1〉 and G1G0V |0〉⊗m = G1|0〉⊗n =

|0〉⊗n, and so on. For the first column a decomposition scheme for state preparation can be used (in

reverse). However, this idea does not work for the second column, since the operator performing

the inverse of state preparation on the second column wouldn’t act trivially on |0〉⊗n in general. We

therefore introduce a modified technique that takes this into account while only slightly increasing

the number of C-not gates needed over that required for state preparation on each column. This

technique borrows a decomposition scheme for uniformly controlled gates from [8]. We describe

this technique in our work and give a rigorous proof that it works for arbitrary isometries in the

Appendix. This proof can also be seen as an alternative way to [1] to prove the universality of the

gate library containing single-qubit and C-not gates.

Remark: In the cases m = n and m = n − 1, it turns out that there is a more efficient

decomposition based on the CSD. In the case m = n, this is exactly the deomposition used in [2]

for arbitrary gate synthesis. For m = n− 1 an adaptation of this technique can be used to give a

lower C-not count than our first method. This is also displayed in Table I.

Since the number of qubits which are manageable in physical experiments is still quite small,

we have also tailored optimizations of these techniques in the case of small n. In particular one can

use our decomposition schemes for isometries to lower the up to date lowest known C-not count

for state preparation on five qubits from 26 to 19 C-not gates.
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