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Quantum thermodynamics aims at fleshing out the ultimate limits of thermodynamic processes. We have seen renewed
efforts in understanding fundamental laws of thermodynamics [2–5] in the quantum nano-regime, where finite size
effects [6] and quantum coherences become increasingly relevant. In particular, casting thermodynamics as a resource
theory [3, 4, 7, 8] allows us to borrow intuition from entanglement and information theory [9–11]. Analogous to the
transformations of entangled states via local operations and classical communication (LOCC), in thermodynamics we
study state transformations ρ→ σ that can be accomplished via thermal operations (TO). Roughly speaking, TO refers
to operations that can be implemented by coupling the system to a thermal bath of fixed temperature T , and applying any
global energy-preserving unitary. Also similarly to LOCC where state conversion conditions are in terms of majorization
[12, 13], the conditions for ρ→ σ via TO take the form of thermo-majorization [14]. The closely related mathematical
structure allows the application of many insights and tools derived in information theory.
In the context of TO, it is most natural to allow for ancillae to facilitate processes – after all, it is the ultimate limits of
thermodynamic operations that are at stake. There are cases where ρ→ σ is not possible, but there exists a state ωC such
that ωC ⊗ ρ→ ωC ⊗ σ is possible. This is called exact catalysis. The inclusion of catalyst states in thermal operations
seems a crucial and necessary step towards obtaining a complete picture of quantum thermodynamics: it allows us to
describe thermodynamic transformations where the system interacts with experimental apparatus, for example a clock
system (or an actual physical catalyst after all). Mathematical conditions for catalytic majorization [15, 16] have been
extended to the thermodynamic setting, giving us entire families of second laws for quantum thermodynamics.
Again specifically in the thermodynamic context, it is very natural indeed to allow for inexact catalysis, i.e., situations
in which the catalyst is returned except for a slight degradation (as measured, for example, by trace distance). Yet,
in entanglement theory there exists a curious effect called embezzling [10, 17]: Here a state |µ(n)〉 of dimension n,
when shared between two parties Alice and Bob, is capable of achieving |µ(n)〉 −−−−→

LOCC
|µ(n)〉|φ〉AB for any |φ〉AB .

What is more, embezzling can be performed with arbitrarily small precision as the dimension of the embezzling state
grows. There also exist universal embezzling catalysts that can facilitate any process ρ → σ [17]. When translated to
thermodynamics, this means: for any ε > 0 and any two states ρ and σ, there exists ωC such that starting from ωC ⊗ ρ,
we get ε-close in terms of trace distance to ωC ⊗ σ via TO. Table 1 lists some similarities and differences between
LOCC embezzling and inexact catalysis. Clearly, in the thermodynamic context, this gives rise to a rather unreasonable
situation and hence an important puzzle to be solved. In this work, we resolve this puzzle – in both a mathematically
and physically plausible fashion – and provide a comprehensive analysis.

LOCC embezzling Inexact catalysis
State conversion conditions Related to majorization

Phenomena
The usage of a catalyst state of large dimension/energy while tolerating slight

degradation allows the preparation of any desired target state to arbitrary precision
Hamiltonians Not of interest Of much physical significance

States Pure, multipartite states Mixed states in general
Commonly used

measure of closeness
Fidelity of global state

(system and embezzling state)
Trace distance between

input and output catalyst state
Allowed operations LOCC/LO operations Exact catalysis
Accuracy limited by Dimension Dimension and energy

Table 1: An overview of differences between LOCC embezzling and inexact catalysis.

Specifically, we investigate the performance of catalyst input/output pairs (ωC , ω
′
C) which are able to achieve ρ⊗ωC →

σ ⊗ ω′C , for any ρ and σ (of fixed dimension). The catalytic error is defined as the trace distance between ωC and ω′C .
Here, we highlight the power and limitations of inexact catalysis, by reporting these results:
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1. We construct an family of catalyst pairs with dimension n, which is able to facilitate any ρ→ σ, for ρ and σ being
arbitrary m-dimensional states. This is analysed in the simple case where all Hamiltonians involved are trivial
(proportional to identity). We show via mathematical induction that our family achieves the optimal catalytic
error. The optimal error vanishes as n→∞, demonstrating the power of catalysis.

2. We identify physically motivated restrictions on any catalyst pair (ωC , ω
′
C), such that if the catalyst pair is able to

facilitate any state transformation process, then the catalytic error must be lower bounded by a non-zero constant.
We analyse two forms of restrictions: (a) catalysts with bounded dimension, and (b) catalysts (possibly infinite
dimensional) such that the partition function ZC is finite, and the average energy of ωC (input catalyst) is finite.

Our first result concerning the construction of a family of catalysts partially contributes to the search for optimal em-
bezzling states in LOCC setting [10, 11]. From a more physical viewpoint, the second part of our results strongly limits
the possibility of drastically enlarging the set of allowed processes in quantum thermodynamics, when systems with
physically relevant Hamiltonians are considered. Our methodology makes use of tools from quantum information, fur-
thermore we use convex relaxation techniques to arrive at part of our second result, which is a novel approach towards
investigating such problems. We hope that the use of such information theoretic approaches continue to unearth the
reality of quantum thermodynamical processes.
The power of inexact catalysis. We first explore the case of trivial Hamiltonians, the simplest case of thermal operations
when the Hamiltonian is proportional to the identity operator. The conditions governing a transition ρ → σ is that the
eigenvalue vector of ρ majorizes that of σ [3], denoted as ρ � σ. Given fixed integers m,n, we ask what is the smallest
ε(m,n) such that there exists a catalyst state pair (ωC , ω

′
C) that facilitates ρ → σ for any ρ, σ being m−dimensional

states, while the trace distance d(ωC , ω
′
C) ≤ ε(m,n). This is used as a measure of catalytic error throughout our

analysis. We show that this can be simplified by considering a single transformation

ωC ⊗ I/m � ω′C ⊗ |0〉〈0|. (1)

This is because if some catalyst pair (ωC , ω
′
C) satisfies Eq. (1), then it also facilitates ωC ⊗ ρ → ω′C ⊗ σ for any m-

dimensional states ρ, σ. Therefore, this example is uniquely interesting since the optimal error for this transformation is
also optimal for inducing arbitrary state transformations within this fixed Hilbert space.
Since majorization conditions depend solely on the eigenvalues of the density matrices ωC and ω′C , we show that finding
the optimal ε(m,n) can be casted as the solution of a linear minimization program over catalyst states diagonal and
ordered in the same basis. By running this linear program for small m and n, we were able to guess the form of the
optimal catalyst pair. We then prove that this construction is indeed optimal and obtained the following theorem.
Theorem 1 (Power of inexact catalysis) For m ≥ 2 and n = ma where a ≥ 1 is an integer, the optimal catalytic error
is ε(m,n) = m−1

1+(m−1) logm n . Let ωC =
∑n

i=1 ωi|i〉〈i|, where ω1 = m/[1 + (m− 1)a],

ωi =

{
ω1m

−dlogm ie if 2 ≤ i ≤ n/m,
0 if i > n/m.

(2)

Define ω′C to be such that ω′1 = ω1/m, ω′i = ωi for i ∈ [2, n/m] and ω′i = m1−a/[1 + (m − 1)a] for i > n/m. Then
(ωC , ω

′
C) achieves ε(m,n).
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Figure 1: The comparison of trace distance error for our state ωC (blue, solid) and ω̃C (red, dashed) for m = 2.

In Fig. 1 we compare the catalytic error achieved by our catalyst, compared to the state proposed in Ref. [17]. We see
that for small dimensions ωC outperforms ω̃C , however asymptotically the error scales with log n for both catalysts.
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The limits of inexact catalysis. Here, our goal is to identify physical restrictions that prevent the existence of universal
catalysts with arbitrarily small catalytic error. Given HamiltoniansHS , HC , we ask what is the smallest ε such that there
exists (ωC , ω

′
C) where

ωC ⊗ τS → ω′C ⊗ΠS
max (3)

is possible via TO, where ΠS
max = |ESmax〉〈ESmax| is the pure energy eigenstate with energy ESmax, and d(ωC , ω

′
C) ≤ ε.

Intuitively, this process is the hardest case of state transformation between diagonal states in the energy eigenbasis. More
precisely, if Eq. (3) holds, then for any ρS and ρ′S diagonal in HS , ωC ⊗ ρS → ω′C ⊗ ρ′S is also possible.
It is shown [2] that the monotonicity of quantum Rényi divergences [18] are necessary conditions for state conver-
sions. More precisely, given some HS and T , for any ρS and ρ′S , if ρS → ρ′S via exact catalysis, then for all α ≥ 0,
Dα(ρS‖τS) ≥ Dα(ρ′S‖τS) holds, where τS is the thermal state of system S, at temperature T of the thermal bath.
Therefore, this allows us to lower bound ε by invoking the monotonicity of Dα for any α ≥ 0, i.e. defining

εα := min
1

2
‖ωC − ω′C‖1 (4)

s.t. Dα(ωC ⊗ τS‖τCS) ≥ Dα(ω′C ⊗ΠS
max‖τCS), 0 ≤ ωC , ω′C ≤ I,

where τCS = τC ⊗ τS is the thermal state of the catalyst and system. By using Eq. (4), we derive Theorem 2.

Theorem 2 (Finite dimension) Consider system and catalyst Hamiltonians HS , HC which are finite-dimensional, and
denote {ESi }mi=1, {ECi }ni=1 to be the set of energy eigenvalues respectively. For any catalyst pair (ωC , ω

′
C) where

ωC ⊗ τS → ω′C ⊗ΠS
max is possible via TO, the catalytic error

ε ≥ ε∞ ≥
(

ZS

e−βES
max
− 1

)
e−βE

C
max

ZC
6= 0. (5)

To consider infinite-dimensional catalysts, we use Eq. (6) for α = 1/2. Method-wise, we first use relaxation techniques
to split the non-convex minimization into smaller and significantly easier convex subproblems involving independent
variables. By exploiting Lagrange duality in these nested optimization programs we arrive at the following theorem.
Theorem 3 (Finite initial average energy) Consider any system and catalyst Hamiltonian HS , HC , and assume that
dim(HS) ≥ 2. For any diagonal catalyst pair (ωC , ω

′
C) where ωC ⊗ τS → ω′C ⊗ ΠS

max is possible via TO, and if
tr(HCωC) ≤ E, then the catalytic error is lower bounded by

ε ≥ ε21/(9ZC), (6)

where ε1 = max
W∈(0,1)

Wγ
EC

j(W ) and j(W ) = min{j : ECj+1 > E/(1−W ).

Theorems 2 and 3 prove a strictly positive lower bound on the catalytic error. In particular, Theorem 3 has remarkable
implications, i.e. even with infinite dimensional catalysts, as long as the catalyst Hamiltonian corresponds to a finite
partition function, and the input catalyst has finite average energy, one cannot find universal catalyst pairs that facilitate
arbitrary state transformations with vanishing error. Such a phenomenon is distinctively different from the LOCC setting,
which does not consider the role of Hamiltonians in entanglement resources. The lower bounds in Theorem 3 can also
be generalized to tighter versions, depending on the form of HS . We summarize our findings in Table 2. Note that both
our case studies above can be modified to study specific state transformations ρS to ρ′S as well, obtaining lower bounds
similar to Eq. (6), but state dependent. This is useful if one wants to account for more specific specific cases of resource
generation (instead of studying universal catalyst pairs). Precise details of this work can be found in Ref. [1].

aaaaaaaaaa
Energy levels

Dimension
Bounded Unbounded

Fully degenerate No Yes
Bounded No True at least for fully degenerate Hamiltonians

Unbounded N/A No, if average energy and partition function is finite

Table 2: The possibility of inexact catalysis for all state conversion processes with arbitrary precision.
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