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Summary. Our main result is a procedure to obtain a Rényi generalization of any quantum information
measure which consists of (a) a linear combination of von Neumann entropies with coefficients chosen
from the set {−1, 0, 1} [2], or, (b) a difference of two relative entropies [25]. In [2], we apply the procedure
to obtain Rényi generalizations of the conditional quantum mutual information (CQMI). We can show
that the proposed Rényi CQMIs retain the desired properties of the original quantity based on the von
Neumann entropy. We conjecture that the proposed Rényi CQMIs are monotone increasing in the Rényi
parameter and give proofs of the conjecture for some special cases. The solution of the conjecture would
imply a characterization of quantum states with small CQMI. This characterization would be useful for
understanding topological order in condensed matter physics [10, 11], for solving some open questions
related to squashed entanglement [32], as well as for deriving quantum communication complexity lower
bounds [12], as discussed in [30].

The CQMI underlies the squashed entanglement (SE) [3] and the quantum discord (QD) [20]. We
define a Rényi SE and a Rényi QD [2, Section 10], and investigate some properties and applications of the
quantities [25]. In particular, we investigate the validity of the proposed Rényi SE as an entanglement
measure [9, 22] and we show that it retains many of the properties of the von Neumann quantity. The
results in [2] and [25] involve the use of trace inequalities from matrix analysis including recently invented
proof techniques of Hiai [7] and Frank and Lieb [4].

Background. In quantum information theory, there has been much interest lately towards generalizing
quantum information measures in terms of the Rényi entropies [24]. Rényi generalizations of quantum
information measures enable us to improve our understanding of the original von Neumann quantities;
e.g., in some cases they serve as crucial tools in proving that the corresponding von Neumann quantities
are strong converse rates for certain operational tasks [1, 18, 13, 23, 26, 31, 5, 29]. Rényi quantum
information measures also find applications in scenarios beyond the traditional i.i.d. (independent and
identically distributed) resource setting, e.g., in the one-shot regime [8, 6, 15, 16].

A quantum Rényi conditional entropy and mutual information have been proposed and studied [18,
13, 15, 26, 17, 31, 5, 28]. However, it has been a vexing open question to obtain a Rényi conditional
quantum mutual information (CQMI). The CQMI of a tripartite state ρABC is defined as

I(A; B|C)ρ ≡ H(AC)ρ + H(BC)ρ −H(C)ρ −H(ABC)ρ, (1)

where H(F)σ ≡ −Tr{σF log σF} is the von Neumann entropy of a state σF on system F. The CQMI is
non-negative and monotone under local quantum operations on systems A and B. The CQMI also obeys
a duality relation, I(A; B|C)ψ = I(A; B|D)ψ, for any four-party pure state ψABCD.

Validation criteria for Rényi generalizations. We consider the following criteria to validate Rényi
generalizations of quantum information measures: (a) A Rényi generalization should retain the essential,
desired properties of the original von Neumann quantity; e.g., in the case of the CQMI, these properties
include non-negativity, monotonicity under local quantum operations on systems A and B, and the
duality relation mentioned above. (b) A Rényi generalization should converge to the original von
Neumann quantity in a suitable limit of the Rényi parameter. This standard already invalidates the most
commonly employed Rényi generalizations of measures that are linear combinations of von Neumann
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entropies—namely, where the von Neumann entropies are simply replaced by Rényi entropies. For
example, the following Renyi CQMI is invalid according to the above standard:

I′α(A; B|C)ρ ≡ Hα(AC)ρ + Hα(BC)ρ −Hα(C)ρ −Hα(ABC)ρ, (2)

where Hα(F)σ ≡ [1 − α]−1 logTr
{
σαF

}
for a state σF on system F, and α ∈ (0, 1) ∪ (1,∞). This is because,

in general, I′α(A; B|C)ρ can be negative. Furthermore, the results of [14] imply that there are generally
no linear inequality constraints on the marginal Rényi entropies of a multiparty quantum state other
than non-negativity when α ∈ (0, 1) ∪ (1,∞). This also implies that monotonicity under local quantum
operations generally does not hold for I′α(A; B|C)ρ, and [14] provides many examples of four-party states
ρABCD such that I′α(A; BD|C)ρ < I′α(A; B|C)ρ.

Procedure. Our procedure to obtain a Rényi generalization of a linear combination of von Neumann
entropies, detailed in [2, Section 10], can be summarized in three steps. (a) We write the quantum
information measure that we wish to “Rényi generalize” as a single information quantity in terms of the
relative entropy. (b) We re-express the second argument of the relative entropy using the generalized Lie-
Trotter product formula [27]; this introduces an extra parameter α. (c) We use the free parameter α as our
handle and replace the relative entropy with the Rényi relative entropy [21], [17], [31] or the sandwiched
Rényi relative entropy [17], [31] by allowing α to vary within suitable intervals. The resulting quantity is
a Rényi generalization of the information measure. The procedure to obtain a Rényi generalization of a
quantity which is a difference of two relative entropies is very similar, and is given in [25]. In short, we
re-express the relative entropy difference as a single relative entropy and apply steps (b) and (c) outlined
above.

We now show how to apply the above procedure to obtain Rényi generalizations of the CQMI.

Definition 1. The Rényi conditional mutual information of ρABC is defined for α ∈ [0, 1) ∪ (1,∞) as

Iα (A; B|C)ρ ≡ inf
σBC

1
α − 1

log Tr
{
ραABCρ

(1−α)/2
AC ρ(α−1)/2

C σ1−α
BC ρ

(α−1)/2
C ρ(1−α)/2

AC

}
, (3)

where the optimization is over density operators σBC such that supp
(
ρABC

)
⊆ supp (σBC) and the matrix inverses

are understood to be generalized inverses.

We can identify an explicit form for the minimizing σBC and thus for Iα (A; B|C)ρ whenα ∈ (0, 1)∪(1,∞),
and write the latter as

Iα (A; B|C)ρ =
α

α − 1
log Tr

{(
ρ(α−1)/2

C TrA

{
ρ(1−α)/2

AC ραABCρ
(1−α)/2
AC

}
ρ(α−1)/2

C

)1/α
}
. (4)

This follows because the infimum in (3) can be replaced by a minimum and the minimum σBC is unique
with an explicit form given by a Sibson identity [2]. The sandwiched Rényi CQMI is similarly defined in
[2, Definition 19]. In [2], we have proven that these Rényi CQMIs satisfy most of the criteria for a valid
Rényi generalization mentioned before (see Table 1 for a summary of the properties that hold and some
which remain open, however with numerical evidence supporting them).

Applications of the proposed Rényi CQMI.

• Monotonicity in the Rényi parameter. We conjecture that our Rényi generalizations of the CQMI are
monotonically increasing functions of the Rényi parameter. That is, for 0 ≤ α ≤ β, we conjecture that

Iα(A; B|C)ρ ≤ Iβ(A; B|C)ρ, (5)

as well as the analogous statement for the sandwiched Rényi CQMI. These conjectures are true in a
number of special cases. For example, we show that these conjectures hold when the Rényi parameter
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Formula I(A; B|C)ρ (1) I′α(A; B|C)ρ (2) Iα (A; B|C)ρ (4) Ĩα (A; B|C)ρ ([2, (6.13)])

Non-negative ! # ! !

Monotone under
local op.’s on A ! # ? ?

Monotone under
local op.’s on B ! # ! !

Duality ! ! ! !

Monotone in α N/A # ? ?

Table 1: A comparison between the original von Neumann CQMI, the commonly considered Rényi
generalization of the quantity, and the Rényi generalizations proposed in this work, in terms of some
properties of the original CQMI. The ?’s indicate open questions with numerical evidence supporting a
positive answer.

α is in a neighborhood of one, and that (5) is true in the case when α + β = 2 (or when 1/α + 1/β = 2
for the sandwiched Rényi CQMI) [2, Section 8]. If proven to be correct generally, the above conjecture
would establish the truth of an open conjecture from [10] (up to a constant):

I(A; B|C)ρ ≥ Ĩ1/2(A; B|C)ρ = − log F(ρABC,R
P
C→AC(ρBC)) (6)

≥
1
4

∥∥∥ρABC − R
P
C→AC

(
ρBC

)∥∥∥2
1 (7)

where R(·) ≡ ρ1/2
ACρ

−1/2
C (·)ρ−1/2

C ρ1/2
AC denotes Petz’s recovery map for the partial trace over A [19] and

F(P,Q) ≡ ‖
√

P
√

Q‖21 is the quantum fidelity. This would give an operational characterization of
quantum states with small CQMI (i.e., states that fulfill strong subadditivity with near equality) [2,
Section 8.4]. Some important applications of such a characterization were pointed out in the first
paragraph of this submission.

• Rényi squashed entanglement We define the Rényi SE of a bipartite state ρAB as

Esq
α (A; B)ρ ≡

1
2 inf
ωABE

{
Iα (A; B|E)ω : ρAB = TrE {ωABE}

}
, (8)

where the infimum is over all tripartite extensions ωABE of the state ρAB. We prove that the above
functional is non-negative, monotone under LOCC operations, convex, additive on tensor-product
states, and takes the value zero iff the state ρAB is a separable state. (Some of these proofs rely on
the monotonicity of the Rényi CQMI under local operations on system A, which however is yet to
be proven.) These properties qualify it as an entanglement measure in itself. We show that the
Rényi SE is a lower bound on the Rényi entanglement of formation of bipartite states. The Rényi SE
could potentially be used to prove strong converse bounds for entanglement distillation and two-way
assisted quantum communication.

• Rényi quantum discord QD, which is traditionally viewed as the gap between total correlations and
classical correlations in a bipartite state, can also be viewed as the following CQMI

D (A; B)ρ = inf
{Λ}

I (B; E|X) ,

where the optimization is over all POVMs acting on the system A, with X being the classical output
and E being an environment system that forms an isometric extension of any such measurement [2].
This allows us to define a Rényi QD by considering the Rényi CQMI of (3) in place of the von Neumann
CQMI. In [25], we prove that a Rényi QD defined in such a way retains the desired properties of the
von Neumann-based QD, namely, it is non-negative and invariant under local unitary operations.
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ment, discord, and relative-entropy differences. 2014.

[26] Naresh Sharma and Naqueeb Ahmad Warsi. On the strong converses for the quantum channel
capacity theorems. June 2012. arXiv:1205.1712.

[27] Masuo Suzuki. Transfer-matrix method and Monte Carlo simulation in quantum spin systems. Phys.
Rev. B, 31(5):2957, March 1985.

[28] Marco Tomamichel, Mario Berta, and Masahito Hayashi. A duality relation connecting different
quantum generalizations of the conditional Rényi entropy. November 2013. arXiv:1311.3887.
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