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Characterizing the mutual incompatibility of a set of quantum observables is an important
question both from a quantum cryptographic as well as a foundational point of view. While
Heisenberg’s uncertainty principle [1, 2] was the first quantitative statement on incompatibility
of a pair of canonically conjugate observables, later formulations in terms of entropic quantities
characterize the incompatibility of any set of observables via entropic uncertainty relations (EURs)
(see [3] for a recent review). EURs play an important role in the security of quantum cryptographic
tasks [4–6], and are often thought to provide a measure of incompatibility. However, EURs give
rise to a trivial bound whenever the observables in question share a single common eigenvector.
This suggests that EURs cannot be thought of as measures of incompatibility in general, and, that
there is a need to look beyond the standard entropic uncertainty formalism.

Recently, alternate measures have been proposed [7, 8] which aim to go beyond the standard
EUR formalism in quantifying incompatibility. Formally, and operationally, these measures depart
significantly from other approaches that aim to extend the scope of standard entropic uncertainty
framework [9–11]. In this work, we focus on the operational measure (Q) defined in [7], which cap-
tures the incompatibility of a set of non-commuting observables as manifest in the non-orthogonality
of their eigenstates. It was shown [7] that the measure Q satisfies all the desired properties: it is
zero when the observables commute, strictly greater than zero when they do not, and is maximum
when they are mutually unbiased.

In this work, we seek to clarify the exact relation between this operational approach to quanti-
fying incompatibility and the standard EUR formalism. We evaluate Q for a pair of observables
that commute on a subspace, thus providing an explicit example of a class of observables for which
the measure Q goes beyond EURs in quantifying incompatibility. For a general set of observables
we prove that the measure Q is greater than or equal to the lower bound on a corresponding EUR.

Furthermore, we make precise the role played by the measure Q in QKD – for a QKD protocol
whose signal ensemble comprises the eigenstates of a set of quantum observables, we show that the
measure Q is in fact the minimum error rate caused by an eavesdropper adopting an intercept-
resend strategy. Finally, we evaluate Q for a pair of qubit observables, and obtain a lower bound
for the incompatibility of any set of observables, which is efficiently computable via a semidefinite
program (SDP).

We briefly summarize our results here and refer to the technical attachment for further details
and proofs.
An operational measure of incompatibility: Consider a set of N non-degenerate, noncom-
muting observables {A(1), A(2), . . . , A(N)} in a d-dimensional Hilbert space Hd. Since such a set
of noncommuting observables does not admit a complete set of common eigenstates, atleast some

of their eigenstates must be nonorthogonal. Let |ψ
(i)
j 〉〈ψ

(i)
j | denote the jth eigenstate of the ith

observable A(i). Then, the mutual incompatibility of the observables {A(i)} implies that the states

in the ensemble S ≡ {|ψ
(i)
j 〉〈ψ

(i)
j |}, i ∈ [N ], j ∈ [d] are not perfectly distinguishable. The more

incompatible the observables {A(i)} are, the lesser is the fidelity with which their eigenstates can be
distinguished. The incompatibility Q(A(1), A(2), . . . , A(N)) can therefore be defined as the comple-
ment of the best possible fidelity obtained in a quantum state estimation process for the ensemble
of their eigenstates.



The maximum fidelity that can obtained in a state estimation process for states drawn from
the ensemble S with equal probability ( 1

Nd ) is,

Fmax
S =

1

Nd
sup
M,R

∑

a,i,j

〈ψ
(i)
j |Ma|ψ

(i)
j 〉〈ψ

(i)
j |σa|ψ

(i)
j 〉, (1)

where the maximization is over all positive operator valued measures (POVMs) M with elements
{Ma} (0 ≤ Ma ≤ I,

∑

aMa = I), and state reconstruction maps R : a → σa, such that, when
the measurement outcome is a, the state σa is prepared. The mutual incompatibility Q of the
observables {A(1), . . . , A(N)} is then defined as [7],

Q(A(1), . . . , A(N)) = 1− Fmax
S . (2)

Since Q(A(1), . . . , A(N)) = 0 if and only if the observables {A(1), . . . , A(N)} all commute. The
measure Q thus captures the incompatibility of any set of observables.
Relevance in quantum cryptography : The measure Q is of direct relevance in the context
of quantum key distribution (QKD) protocols of the prepare and measure type [12]. Consider a

QKD protocol in which Alice transmits pure states |ψ
(i)
j 〉〈ψ

(i)
j | drawn uniformly at random from

the ensemble S. The eavesdropper employs an “intercept-resend strategy” which consists of a
measurement M described by a POVM with elements {Ma}, followed by a state reconstruction
map R : a→ σa, such that, when the measurement outcome is a, the intercepted state is replaced
with the state σa and sent to Bob.

It is known [7] that the measure Q(A(1), . . . , A(N)) is simply the complement of the accessible
fidelity, which is the best possible fidelity an eavesdropper employing an intercept-resend strategy
can obtain in such a QKD protocol [13]. Here, we show a more direct, quantitative relation
between the incompatibility of a set of observables and the error rate caused by the presence of an
eavesdropper in a corresponding QKD protocol.

Lemma 1. For a QKD protocol whose signal states are drawn uniformly at random from the
eigenstate ensemble S, the measure Q(A(1), . . . , A(N)) is the attainable lower bound on the error
rate caused by an eavesdropper adopting an intercept-resend strategy.

Incompatibility and entropic uncertainty: For a set of N observables {A(1), A(2), . . . , A(N)},
an entropic uncertainty relation (EUR) seeks to lower bound the average of the entropies associated
with a measurement of each observable A(i) on distinct yet identically prepared copies of a state
|φ〉 ∈ Hd), as follows:

inf
|φ〉

1

N

N
∑

i=1

Hα(A
(i), |φ〉) ≥ cα(A

(1), . . . , A(N)),

where Hα(.) denotes the entropy function of choice. Here, we present an example of a class of
observables for which Q is strictly a better measure of incompatibility, namely, observables that
commute on a subspace. Such observables are often encountered in quantum theory, for example,
in the theory of angular momentum, where the operators Lx and Lz do not commute but still have
the l = 0 state as a common eigenvector.

Consider a pair of non-degenerate observables A,B that commute over a subspace of dimension
dc and are mutually unbiased [19] in the (d−dc)-dimensional subspace where they do not commute.
We show that the mutual incompatibility of such a pair of observables is given by,

Q(A,B) =
1

2

(

1−
dc + 1

d

)

. (3)



Since EURs attain a trivial (zero) lower bound for such a pair of observables, this example clearly
establishes that the measure Q goes beyond EURs in quantifying the incompatibility of a general
sets of quantum observables. More generally, for any set of observables, we show that the measure
Q and an EUR lower bound are related as follows.

Theorem 2. For a set of N non-degenerate observables {A(1), A(2), . . . , A(N)} with an associated
ensemble of eigenstates S, the incompatibility Q(A(1), A(2), . . . , A(N)) is bounded from below by the
average Tsallis T2 entropy [14][20], that is,

Q(A(1), A(2), . . . , A(N)) ≥ min
|φ〉

1

N

∑

i

T2(A
(i); |φ〉). (4)

Equality holds iff the POVM M ≡ {Ma} achieving the optimal fidelity of the ensemble S is sym-

metric, that is, the individual the POVM elements Ma all achieve the same average fidelity for
the ensemble S.

Incompatibility of qubit observables: For a pair of observables A,B acting on H2, and pa-
rameterized by real vectors ~a,~b ∈ R

3 respectively, we obtain an exact expression for their mutual
incompatibility:

Q(A,B) =
1

4
(1− | cos δ|) , (5)

where, ~a ·~b = cos δ. Comparing with the known lower bound on T2 entropy [15] for a pair of qubit
observables, we see that the condition for equality in Theorem 2 is met, and that the inequality (4)
is indeed saturated in this case.
An efficiently computable lower bound for Q : It is not known if the incompatibility Q of a
general set of observables is efficiently computable. In fact, evaluating the maximum fidelity Fmax

S

attainable in a quantum state estimation process for a general ensemble of states S has been shown
to involve a sequence of semi-definite programs (SDPs) [16]. Here, we show that for any set of
observables, the measure Q has an efficiently computable lower bound, by recasting the maximum
fidelity function as a matrix norm [17]. Specifically,

Q(A(1), . . . , A(N)) ≥ 1− min
ρ:ρ�0

Tr(ρ)=1

||Aρ||∞, (6)

where ||.||∞ is the operator norm defined as ||M ||∞ = sup‖α‖=1〈α|M |α〉, and the operator Aρ is,

Aρ =
∑

i,j

|ψi
j〉〈ψ

i
j | ⊗

(

ρ−1/2|ψi
j〉〈ψ

i
j |ρ

−1/2
)

.

The lower bound in Eq. (6) involves minimizing the maximum eigenvalue of a positive operator,
subject to positive semidefinite constraints, and can be efficiently computed via a semidefinite
program [18].

In summary, we establish a quantitative relation between two seemingly different approaches
to quantifying incompatibility, namely, the operational measure Q originally proposed in [7] and
entropic uncertainty. We show that evaluating Q for a set of observables {A(1), . . . , A(N)} is of
direct relevance in analyzing QKD protocols involving the associated ensemble S of eigenstates,
since Q is the attainable lower bound on the error rate caused by an eavesdropper adopting an
intercept-resend strategy. We also address the problem of evaluating the incompatibility of a
general set of observables by providing an efficiently computable lower bound on the measure Q.
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