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Boson-sampling is a highly simplified, but non-
universal, approach to linear optics quantum comput-
ing (LOQC) [1]. Whilst not universal, it was shown by
Aaronson & Arkhipov [2] to be a computationally hard
problem. The hardness relates to the fact that each am-
plitude γS is proportional to a matrix permanent, which
is computationally hard to classically calculate. This is
of great practical interest as conventional approaches to
LOQC might require millions of photons to implement
a post-classical algorithm, whilst boson-sampling may
only require approximately twenty.

The boson-sampling model has n photons prepared
in m = O(n2) optical modes. The input state,

|ψin〉 = â†1 . . . â
†
n|01, . . . , 0m〉 is evolved via passive lin-

ear optics (beamsplitters and phase-shifters), which im-

plements a unitary map Û â†i Û
† =

∑
j Ui,j â

†
j . The out-

put state is a large superposition of photon-numbers,

of the form |ψout〉 =
∑

S γS |n
(S)
1 , . . . , n

(S)
m 〉, where S is

a photon-number configuration, n
(S)
i is the number of

photons in the ith mode associated with configuration
S, and γS is the associated amplitude. Finally, the out-
put state is sampled via photodetection, which obtains
the probability distribution P (S) = |γS |2. For a dia-
grammatic representation of boson-sampling see Fig. 1.

A logical next question is ‘are there other quantum
states of light, which also yield computationally hard
sampling problems?’ Here we address this problem by
showing that three other classes of quantum states of
light yield computationally hard sampling problems.

The first is photon-added coherent states (PACS) [3],
which are of the form â†|α〉, where |α〉 is a coherent
state of amplitude α. In this case, the input state to our

multi-mode device is |ψin〉 = â†1 . . . â
†
n|α1, . . . αm〉. This

derivation is subject to the constraint |α| < 1/poly(n).

The second are photon-added or subtracted
squeezed vacuum (PASSV) states [4], which are

of the form â†Ŝ(ξ)|0〉 and âŜ(ξ)|0〉 respectively.

Ŝ(ξ) is the squeezing operator with squeez-
ing parameter ξ. The input state considered is

â†1Ŝ1(ξ) . . . â†nŜn(ξ)Ŝn+1(ξ) . . . Ŝm(ξ)|01 . . . 0m〉.
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FIG. 1: The boson-
sampling model for
quantum computa-
tion.

The third state is ‘cat states’
[5] – superpositions of coher-
ent states – which are of
the form |cat〉 =

∑
i λi|αi〉. We

show that in the small am-
plitude limit, cat states are
provably hard. In the limit of
larger amplitudes we present
strong evidence that the prob-
lem is computationally hard by
connecting the output ampli-
tudes to a permanent-like func-
tion. This limit is particularly
interesting because these are
macroscopic states, suggesting
that, in general, quantum com-
putational hardness applies to

macroscopic quantum systems.
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