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Summary: We study the difficulty of discriminating between an arbitrary quantum channel
and a “replacer” channel that discards its input and replaces it with a fixed state.1 The results
obtained here generalize those known in the theory of quantum hypothesis testing for binary state
discrimination. We show that, in this particular setting, the most general adaptive discrimina-
tion strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This
conclusion follows by proving a quantum Stein’s lemma for this channel discrimination setting,
showing that a constant bound on the Type I error leads to the Type II error decreasing to zero
exponentially quickly at a rate determined by the maximum relative entropy registered between
the channels. The strong converse part of the lemma states that any attempt to make the Type II
error decay to zero at a rate faster than the channel relative entropy implies that the Type I error
necessarily converges to one. We then refine this latter result by identifying the optimal strong
converse exponent for this task. As a consequence of these results, we can establish a strong con-
verse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to
Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of
a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior
work on the topic. The sandwiched Rényi relative entropy, [16, 27], is a key tool in our analysis.

Background: Quantum channel discrimination is a natural extension of a basic problem in
quantum hypothesis testing, that of distinguishing between the possible states of a quantum system.
In an i.i.d. binary state discrimination problem, the discriminator is provided with n quantum
systems in the state ρ⊗n or σ⊗n, and the task is to apply a binary measurement {Qn, I⊗n−Qn} to
these n systems, with 0 ≤ Qn ≤ I⊗n. One is then concerned with two kinds of error probabilities:
αn(Qn) ≡ Tr {(I⊗n −Qn)ρ⊗n} , the probability of incorrectly rejecting the null hypothesis, the
Type I error, and βn(Qn) ≡ Tr {Qnσ⊗n} , the probability of incorrectly rejecting the alternative
hypothesis, the Type II error. One studies the asymptotic behaviour of αn and βn as n → ∞,
expecting there to be a trade-off between minimising αn and minimising βn.

In quantum channel discrimination, we have a quantum channel with input system A and output
system B, and we are given that the channel is described by either the completely positive trace-

1A more detailed version of this work is available on the arXiv, [5]. We propose to the QIP program committee
that it would be natural to merge our submission with the related work of Hayashi and Tomamichel, [10], because
their results and ours can be combined to strengthen the results of both papers. In our work, we optimise over an
arbitrary choice of input state and adaptive maps but the alternative hypothesis is restricted to a replacer channel
with a memoryless, tensor-power structure. In the Hayashi-Tomamichel paper, the input state is restricted to be
tensor-power, i.e., of the form ψ⊗n

RA, but they optimise over states of the more general form ψR⊗σBn in the alternative
hypothesis. One can combine our results with theirs to obtain a Stein’s Lemma and strong converse exponent where
one optimizes over both the choice of input, arbitrary adaptive maps, and replacer channels with general structure.
The main conclusion of our work persists in this more general setting: the adaptive maps are not necessary and a
tensor-power discrimination strategy suffices in these regimes.
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preserving map N1 or N2. We assume that n uses of the channel are described by either N⊗n1 or
N⊗n2 . A non-adaptive discrimination strategy for n uses of the channel consists of feeding an input
state ψRnAn into the n-fold tensor-product channel, and then performing a binary measurement
{Qn, I −Qn} on the output, which is either N⊗n1 (ψRnAn) or N⊗n2 (ψRnAn). Here, Rn is an ancilla
system on which the channel acts trivially. When an adaptive strategy is used, the output of the
first k uses of the channel can be used to prepare the input for the (k + 1)-th use.

Overview of Results: We specialise to the case of discriminating between an arbitrary quan-
tum channel N and a replacer channel R that discards its input and replaces it with a fixed state
σ. This scenario interpolates between the fully understood case of state discrimination and the still
open problem of general quantum channel discrimination. Here we consider the setup in which the
null hypothesis is the use of N and the alternative hypothesis is the use of the replacer channel.

In asymmetric hypothesis testing, one fixes a constraint on the Type I error, say, and then
seeks to minimise the Type II error. The central result in the asymptotic setting for binary state
discrimination is the quantum Stein’s lemma, [11, 20]. The direct part of the lemma states that for
any constant bound on the Type I error, there exists a sequence of measurements {Qn, I⊗n −Qn}
that meets this constraint and is such that the Type II error decreases to zero exponentially fast
with a decay exponent given by the quantum relative entropy D(ρ‖σ), defined as in [26, 11]. We

also assume that for each k and ψRkAk , supp
(
N⊗kA→B

(
ψRkAk

))
⊆ supp(ψRk

⊗ σ⊗kB ) in order to

avoid trivial counterexamples to the strong converse property.

Theorem 1 Let ε ∈ (0, 1) be a fixed constant. Let N : B(HA)→ B(HB) be an arbitrary quantum
channel and let R : B(HA) → B(HB) be the replacer quantum channel R(XA) = Tr{XA}σB, for
some fixed density matrix σB. Let βadε (N⊗n‖R⊗n) denote the optimal Type II error for discrimi-
nating between N⊗n and R⊗n, obtained by optimising over adaptive strategies for which the Type
I error is less than ε. Then the channel version of Stein’s lemma holds, i.e., for any ε ∈ (0, 1),

lim
n→∞

− 1

n
log βadε

(
N⊗n

∥∥R⊗n) = sup
ψRA

D (NA→B (ψRA) ‖ψR ⊗ σB) . (0.1)

This result has implications for the theory of quantum illumination. Building on prior work in
[22, 23], Lloyd et al. show how the use of entangled photons can provide a significant improvement
over unentangled light when detecting the presence of an object [14, 24]. The goal in quantum
illumination is to determine whether a distant object is present or not by employing quantum light
along with a quantum detection strategy. If the object is present (the alternative hypothesis), then
the signal beam is reflected off the object and returns to the transmitter. The resulting state is
described by (NS ⊗ idI) (ψSI), whereNS describes the noise characteristics of the reflection channel.
If the object is not present (the null hypothesis), then the signal mode is lost and is replaced by a
thermal state θS , so that the joint state becomes θS⊗ψI . Clearly, this is an instance of the replacer
channel. However, our results do not apply to this setting if one takes the null and alternative
hypotheses in the natural way suggested above. Our results apply to the alternative scenario in
which the transmitter and receiver are in different locations and the roles of the null and alternative
hypotheses are switched.

Implicit in prior analyses on quantum illumination is the assumption that a tensor-power, non-
adaptive strategy is optimal. Our results support this assumption (at least in the particular setting
of asymmetric hypothesis testing described above) by showing that no asymptotic advantage is
provided by instead using an adaptive strategy for quantum channel discrimination.2

2Strictly speaking, the results in our paper apply to finite-dimensional systems, whereas the quantum illumination
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As a refinement of the quantum Stein’s lemma, one can study the optimal Type I error given that
the Type II error decays with a given exponential speed. In the case of binary state discrimination,
one is then interested in the asymptotics of the optimal Type I error

αn,r ≡ min
{
αn(Qn) : 0 ≤ Qn ≤ I, βn(Qn) ≤ 2−nr

}
, (0.2)

with r > 0 a constant. In the “direct domain,” when r < D(ρ‖σ), αn,r also decays with an
exponential speed, as was shown in [19]. The exact decay rate is determined by the quantum
Hoeffding bound theorem [9, 18, 1] as

lim
n→∞

− 1

n
logαn,r = Hr(ρ‖σ) ≡ sup

0<α<1

α− 1

α
(r −Dα(ρ‖σ)), (0.3)

where Dα is a quantum Rényi relative entropy and Hr(ρ‖σ) is the (direct) Hoeffding divergence of
ρ and σ. On the other hand, in the “strong converse domain,” when r > D(ρ‖σ), αn,r goes to 1
exponentially fast [20, 17]. The rate of this convergence has been determined in [8, pages 80-81] in
terms of the limit of post-measurement Rényi divergences. A “single-letter” expression has been
obtained recently in [15] using the sandwiched quantum Rényi relative entropy, D̃α, [16, 27]:

lim
n→∞

− 1

n
log(1− αn,r) = sup

α>1

α− 1

α
(r − D̃α(ρ‖σ)), (0.4)

A corresponding result also holds for channel discrimination; we let αad
n,r denote the optimal Type

I error when constrained to use adaptive strategies for which the Type II error satisfies βn < 2−nr.
The following theorem identifies the strong converse exponent, the optimal rate at which the success
probability 1− αadn,r decreases to zero when r > supψRA

D (NA→B (ψRA) ‖ψR ⊗ σB).

Theorem 2 Let N : B(HA) → B(HB) be an arbitrary quantum channel and let R : B(HA) →
B(HB) be the replacer quantum channel R(X) = Tr{X}σB, for some fixed density matrix σB. For
any r > 0,

lim
n→+∞

− 1

n
log(1− αad

n,r) = sup
α>1

inf
ψRA

α− 1

α

[
r − D̃α (NA→B(ψRA)‖ψR ⊗ σB)

]
(0.5)

= inf
ψRA

sup
α>1

α− 1

α

[
r − D̃α (NA→B(ψRA)‖ψR ⊗ σB)

]
. (0.6)

One consequence of Theorem 1 is a strong converse theorem for the quantum-feedback-assisted
classical capacity of a quantum channel. Bowen, [4], proved that a noiseless quantum feedback
channel does not increase the entanglement-assisted capacity of a noisy channel, proving that the
quantum-feedback-assisted capacity of a channel N is equal to I(N ), its entanglement-assisted
capacity, [2, 3, 12]. However, Bowen’s result did not exclude the possibility of a trade-off between
the communication rate and the error probability; our result sharpens Bowen’s, strengthens the
main result of [7], and generalizes [21, Theorem 7] to the quantum case. The approach taken is
inspired by that used in [17] and [21] and later used to prove several strong converse theorems for
quantum channels [13, 27, 7, 25]; our result relies upon the properties of the sandwiched Rényi
relative entropy, [16, 27], and related completely bounded norms, [6].

Theorem 3 For any sequence of quantum-feedback-assisted codes for a channel N with rate C >
I(N ), the success probability decays exponentially to zero as n→∞.

protocols apply to infinite-dimensional, albeit finite-energy, systems. Given that our analysis never has any dimension
dependence, it should be a straightforward exercise to extend our results to infinite-dimensional systems.
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