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We consider here positive maps P : My — My, i.e. mapping complex d X d-
matrices linearly to complex d’ x d’-matrices in such a way that positive matrices
are mapped to positive matrices. For any given n € N, a positive map P is called
n-tensor-stable positive if the n-fold parallel application P®" is a positive map. A
map P is called tensor-stable positive if it is n-tensor-stable positive for all n € IN.

There are two classes of tensor-stable positive maps occuring naturally in quan-
tum information theory: completely positive maps and completely co-positive
maps (the latter are maps of the form 7 o ¢ with a completely positive map T :
Mg — Mg and where ¥ : My — My is the usual matrix transposition). In the
following, we will denote these two classes by trivial tensor-stable positive maps.

We study the question of whether there exist non-trivial tensor-stable positive maps.
Such maps would have profound impact on quantum information theory: (i) they
would prove the existence of NPT-bound entanglement [7, 3, 2]; (%) they would
provide new families of quantum channels with vanishing quantum capacity (cf. [9]).

In this paper, we first show the existence of non-trivial n-tensor-stable positive
maps for any given n € N. Our further main results follow from connecting, in
a quantitative way, the property of n-tensor-stable positivity with the property of
entanglement distillability. This relies on a generalization of distilliation and coding
procedures to block-positive matrices (i.e. to entanglement witnesses). Applying this
method in the limit n — oo, we prove the connection to the NPT-bound entanglement
problem mentioned above, and the statement that any tensor-stable positive map
acting on a qubit domain is necessarily trivial.

Results and used methods

Using unextendible product bases [1], we prove the following:

Theorem 1. For anyn € N and any d,d > 2, there exists a non-trivial n-tensor-stable positive
map P : Mg — My

Unfortunately the techniques used to prove this lemma do not provide a non-trivial tensor-
stable positive map, i.e. a map which remains n-tensor-stable positive for all n € IN.

Our main method for studying the existence problem of tensor-stable positive maps is a gen-
eralization of distillation techniques. Therefore consider the Choi-matrix Cp := (idg ® P) (wq)
of a positive map P : My — My. It is well-known that such a matrix is block-positive, i.e.
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(1p|Cp|d) > 0 for all product vectors [p¢) € €% ® C. We will use the w-negativity defined
as

v (P) := [Cpl1 — tr (Cp) (1)

to quantify the distance of P to the cone of completely positive maps.
We have the following lemma:

Lemma 1. Let P: Mgy, — Mg, be a n-tensor-stable positive map. Then:

v, (P)

YA T) < inf wg — S (2D |, p
”zP”<> =73 ” d ( P )”1 ()

where the infimum is taken over all separable completely positive maps S : Mg, ® Mg, —
Mg ® My, i.e. completely positive maps with product Kraus operators.

Lemma 1 connects the distance of an n-tensor-stable positive map from the completely positive
maps to a generalized (n— 1)-distillability of its Choi-matrix. Together with the following Lemma
we can use results from the theory of entanglement distillation to obtain results for tensor-stable
positive maps:

Lemma 2. For a positive map P : Mg, — Mg, we have:

(i) If P is not completely co-positive, then there exists a separable completely positive map

S Mg,a, = Mgz with

5(0p)2d21_1{(1—2)1@@1—(;—1))1@]. (3)

forp <0 and d € {dy,ds}, i.e. we obtain an entangled Werner state [10].

(ii) If T o P or P ol is not completely positive for the reduction map [6] defined by T'(X) :=
tr (X) 1 — X, then there exists a separable completely positive map S : Mg, 4, — Mgz with

1

S(Cp) = 2_1

[(1-p)1®1—(1—dp)uwq] (4)
for p > é and d € {dy,ds}, i.e. we obtain an entangled isotropic state.

Lemma 2 is proved via a standard twirling argument [6] generalized to block-positive matrices.
Together with Lemma 1 we obtain some important results. As all entangled qubit Werner states
are distillable [2] and therefore lead to a separable completely positive map S needed for the
infimum in Lemma 1, we obtain:

Theorem 2 (No tensor-stable positive qubit maps). There are no non-trivial tensor-stable pos-
itive maps T : Mo — Mg or T : Mg — Mo for any d € N.

Furthermore, if all entangled Werner states were distillable we would obtain a separable com-
pletely positive map needed for Lemma 1 for any tensor-stable positive and not completely
co-positive map. Thus we get:

Theorem 3 (Tensor-stable positivity implies NPT-bound entanglement). If there exists a non-
trivial tensor-stable positive map T : Mg, — Mg,, then there exist NPT bound-entangled states
in dimensions Mg, @ Mg, and Mg, @ Mg,.



Finally we provide a one-parameter family of positive maps containing a tensor-stable positive
map, iff such a map exists. Similarly to the NPT-bound entanglement question, the existence of
a nontrivial tensor-stable positive map can thus be decided by a one-parameter family of maps:

Theorem 4 (One parameter family of candidates for tensor-stable positivity). There ezists a
non-trivial tensor-stable positive map P : Mg, — Mg, iff there is p < 0 and d € {d1,d2} such
that

Ps :=PP @9 0PL (5)
(p)

is tensor-stable positive, where Py, : Mg — My denotes the map corresponding to the Werner
state with parameter p € [—1,1] via the Choi-Jamiolkowski isomorphism.

Applications of tensor-stable positive maps

Tensor-stable positive maps are connected to other interesting questions in quantum informa-
tion theory.

The existence of non-trivial tensor-stable positive maps would have implications on capacity
bounds for quantum channels. For a quantum channel 7 : My — My, let Qo (T) denote the
quantum capacity assisted by 2-way classical communication and let Q (7)) denote the quantum
capacity of T.

Theorem 5. Let P : My, — Mgy, be a non-trivial tensor-stable positive map and T : Mg, —
My, be a quantum channel.

(i) If PoT is a quantum channel, then Qa(PoT) = 0.

log(||P~*oT|o[|P* (1) ) log(d1)

(i) If di = da and P is invertible and unital, then Q (T) < Tog 9o 0<) .

Thus, the class of quantum channels 7 for which P o T is a quantum channel would provide
a new family of channels with vanishing capacity. This is analogous to the class of completely
co-positive channels 7, which have vanishing quantum capacity.

Secondly, in [8, 4, 5] the authors ask, whether there exist quantum channels 7 : My — My
which are not entanglement breaking, but which is still such that for all n € N the channel 7"
maps any input state to a separable state. They call such a channel oo-locally entanglement
annihilating. We show the following:

Theorem 6. If there exists a co-locally entanglement annihilating channel which is not entan-
glement breaking, then there exist a non-trivial tensor-stable positive map.

Therefore the existence of such oco-locally entanglement annihilating channels would again
imply the existence of NPT-bound entanglement.
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