
Tensor-stable positive maps for quantum
information theory

Alexander Müller-Hermes∗, David Reeb†, and Michael M. Wolf‡
Department of Mathematics, Technische Universität München, 85748 Garching, Germany

We consider here positive maps P : Md → Md′ , i.e. mapping complex d × d-
matrices linearly to complex d′ × d′-matrices in such a way that positive matrices
are mapped to positive matrices. For any given n ∈ N, a positive map P is called
n-tensor-stable positive if the n-fold parallel application P⊗n is a positive map. A
map P is called tensor-stable positive if it is n-tensor-stable positive for all n ∈ N.

There are two classes of tensor-stable positive maps occuring naturally in quan-
tum information theory: completely positive maps and completely co-positive
maps (the latter are maps of the form T ◦ ϑ with a completely positive map T :
Md → Md′ and where ϑ : Md → Md is the usual matrix transposition). In the
following, we will denote these two classes by trivial tensor-stable positive maps.
We study the question of whether there exist non-trivial tensor-stable positive maps.

Such maps would have profound impact on quantum information theory: (i) they
would prove the existence of NPT-bound entanglement [7, 3, 2]; (ii) they would
provide new families of quantum channels with vanishing quantum capacity (cf. [9]).
In this paper, we first show the existence of non-trivial n-tensor-stable positive

maps for any given n ∈ N. Our further main results follow from connecting, in
a quantitative way, the property of n-tensor-stable positivity with the property of
entanglement distillability. This relies on a generalization of distilliation and coding
procedures to block-positive matrices (i.e. to entanglement witnesses). Applying this
method in the limit n→∞, we prove the connection to the NPT-bound entanglement
problem mentioned above, and the statement that any tensor-stable positive map
acting on a qubit domain is necessarily trivial.

Results and used methods

Using unextendible product bases [1], we prove the following:

Theorem 1. For any n ∈ N and any d, d′ ≥ 2, there exists a non-trivial n-tensor-stable positive
map P :Md →Md′.

Unfortunately the techniques used to prove this lemma do not provide a non-trivial tensor-
stable positive map, i.e. a map which remains n-tensor-stable positive for all n ∈ N.
Our main method for studying the existence problem of tensor-stable positive maps is a gen-

eralization of distillation techniques. Therefore consider the Choi-matrix CP := (idd ⊗ P) (ωd)
of a positive map P : Md → Md′ . It is well-known that such a matrix is block-positive, i.e.
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〈ψφ|CP |ψφ〉 ≥ 0 for all product vectors |ψφ〉 ∈ Cd ⊗Cd′ . We will use the ω-negativity defined
as

νω (P) := ||CP ||1 − tr (CP) (1)

to quantify the distance of P to the cone of completely positive maps.
We have the following lemma:

Lemma 1. Let P :Md1 →Md2 be a n-tensor-stable positive map. Then:

νω(P)
||P||�

≤ inf
S
||ωd − S

(
C
⊗(n−1)
P

)
||1, (2)

where the infimum is taken over all separable completely positive maps S : Md1 ⊗ Md2 →
Md ⊗Md, i.e. completely positive maps with product Kraus operators.

Lemma 1 connects the distance of an n-tensor-stable positive map from the completely positive
maps to a generalized (n−1)-distillability of its Choi-matrix. Together with the following Lemma
we can use results from the theory of entanglement distillation to obtain results for tensor-stable
positive maps:

Lemma 2. For a positive map P :Md1 →Md2 we have:

(i) If P is not completely co-positive, then there exists a separable completely positive map
S :Md1d2 →Md2 with

S (CP) = 1
d2 − 1

[(
1− p

d

)
1⊗ 1−

(1
d
− p

)
F

]
. (3)

for p < 0 and d ∈ {d1, d2}, i.e. we obtain an entangled Werner state [10].

(ii) If Γ ◦ P or P ◦ Γ is not completely positive for the reduction map [6] defined by Γ(X) :=
tr (X)1−X, then there exists a separable completely positive map S :Md1d2 →Md2 with

S (CP) = 1
d2 − 1 [(1− p)1⊗ 1− (1− dp)ωd] (4)

for p > 1
d and d ∈ {d1, d2}, i.e. we obtain an entangled isotropic state.

Lemma 2 is proved via a standard twirling argument [6] generalized to block-positive matrices.
Together with Lemma 1 we obtain some important results. As all entangled qubit Werner states
are distillable [2] and therefore lead to a separable completely positive map S needed for the
infimum in Lemma 1, we obtain:

Theorem 2 (No tensor-stable positive qubit maps). There are no non-trivial tensor-stable pos-
itive maps T :M2 →Md or T :Md →M2 for any d ∈ N.

Furthermore, if all entangled Werner states were distillable we would obtain a separable com-
pletely positive map needed for Lemma 1 for any tensor-stable positive and not completely
co-positive map. Thus we get:

Theorem 3 (Tensor-stable positivity implies NPT-bound entanglement). If there exists a non-
trivial tensor-stable positive map T :Md1 →Md2, then there exist NPT bound-entangled states
in dimensionsMd1 ⊗Md1 andMd2 ⊗Md2.
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Finally we provide a one-parameter family of positive maps containing a tensor-stable positive
map, iff such a map exists. Similarly to the NPT-bound entanglement question, the existence of
a nontrivial tensor-stable positive map can thus be decided by a one-parameter family of maps:

Theorem 4 (One parameter family of candidates for tensor-stable positivity). There exists a
non-trivial tensor-stable positive map P : Md1 → Md2 iff there is p < 0 and d ∈ {d1, d2} such
that

Pβ := P(p)
W ⊗ ϑ ◦ P

(p)
W (5)

is tensor-stable positive, where P(p)
W : Md → Md denotes the map corresponding to the Werner

state with parameter p ∈ [−1, 1] via the Choi-Jamiolkowski isomorphism.

Applications of tensor-stable positive maps
Tensor-stable positive maps are connected to other interesting questions in quantum informa-

tion theory.
The existence of non-trivial tensor-stable positive maps would have implications on capacity

bounds for quantum channels. For a quantum channel T : Md → Md, let Q2 (T ) denote the
quantum capacity assisted by 2-way classical communication and let Q (T ) denote the quantum
capacity of T .

Theorem 5. Let P : Md1 → Md2 be a non-trivial tensor-stable positive map and T : Md1 →
Md1 be a quantum channel.

(i) If P ◦ T is a quantum channel, then Q2(P ◦ T ) = 0.

(ii) If d1 = d2 and P is invertible and unital, then Q (T ) ≤ log(‖P−1◦T ‖�‖P?(1)‖∞)log(d1)
log(‖ϑ◦P?◦ϑ‖�) .

Thus, the class of quantum channels T for which P ◦ T is a quantum channel would provide
a new family of channels with vanishing capacity. This is analogous to the class of completely
co-positive channels T , which have vanishing quantum capacity.
Secondly, in [8, 4, 5] the authors ask, whether there exist quantum channels T : Md → Md

which are not entanglement breaking, but which is still such that for all n ∈ N the channel T ⊗n
maps any input state to a separable state. They call such a channel ∞-locally entanglement
annihilating. We show the following:

Theorem 6. If there exists a ∞-locally entanglement annihilating channel which is not entan-
glement breaking, then there exist a non-trivial tensor-stable positive map.

Therefore the existence of such ∞-locally entanglement annihilating channels would again
imply the existence of NPT-bound entanglement.
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