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The quantum adversary method was originally introduced by Ambainis [Amb02] for
lower-bounding the quantum query complexity Q(f) of a function f . It is based on op-
timizing a matrix Γ assigning weights to pairs of inputs. It was later shown by Høyer et
al. [HLŠ07] that using negative weights also provides a lower bound, which is stronger
for some functions. A series of works [RŠ12, Rei09, Rei11] then led to the breakthrough
result that this generalized adversary bound, which we will simply call adversary bound
from now on, actually characterizes the quantum query complexity of any function f
with boolean output and binary input alphabet. This is shown by constructing a tight
algorithm based on the dual of the semidefinite program corresponding to the adversary
bound. Finally, Lee et al. [LMR+11] have closed the question for all functions, in gen-
eralizing this result to the quantum query complexity of state conversion, where instead
of computing a function f(x), one needs to convert a quantum state |ρx〉 to another
quantum state |σx〉.

All these results where obtained in the usual discrete-time query model, where each
query corresponds to applying a unitary oracle Ox. In this model, an algorithm then
consists in a series of input-independent unitaries U1, U2, . . . , UT , interleaved with oracle
calls Ox. Another natural model is the continuous-time model, or Hamiltonian-based
model, where the oracle corresponds to a Hamiltonian Hx, and the algorithm consists in
applying a possibly time-dependent, but input-independent, driver Hamiltonian HD(t),
together with the oracle Hamiltonian. The two models are related by the fact that the
unitary oracle Ox can be simulated by applying the Hamiltonian oracle Hx for some
constant amount of time. This implies that the continuous-time model is at least as
powerful as the discrete-time model. In the other direction, Cleve et al. [CGM+09] have
shown that the discrete-time model can simulate the continuous-time model up to at
most a sublogarithmic overhead, which implies that the continuous- and discrete-time
models are equivalent up to a sublogarithmic factor. Lee et al. [LMR+11] later improved
this result to a full equivalence of both models, by showing that the fractional query
model, an intermediate model proved in [CGM+09] to be equivalent to the continuous-
time model, is also lower bounded by the adversary bound, so that all these models
are characterized by this same bound (in the case of functions, a similar result can
be obtained by extending an earlier proof of Yonge-Mallo, originally considering the
adversary bound with positive weights, to the case of negative weights [YM11]).

Even though these results imply that the continuous-time quantum query complexity
is characterized by the adversary bound, they do not provide an explicit Hamiltonian-
based query algorithm, except the one obtained from the discrete-time algorithm by
replacing each unitary oracle call by the application of the Hamiltonian oracle for a
constant amount of time. The resulting Hamiltonian of this algorithm then involves
many discontinuities (at all times in between unitary gates), which is not very satisfying
from the point of view of physics, where reasonable Hamiltonians are smooth. How-
ever, such discontinuities are not unavoidable, as for some problems, continuous-time
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query algorithms based on smooth Hamiltonians are known. The first example is un-
structured search, for which Farhi and Gutmann [FG96] proposed a continuous-time
analogue of Grover’s algorithm based on a simple time-independent Hamiltonian (later,
Roland and Cerf [RC02] also proposed an adiabatic version of this algorithm, based on
a slowly varying Hamiltonian). Later, Farhi et al. [FGG08] proposed a quantum algo-
rithm for the NAND-tree based on scattering a wave incoming on the tree, also using
a time-independent Hamiltonian. It is precisely this algorithm that, through successive
extensions, led to the tight algorithm based on the adversary bound for any function
in [Rei11], but these extensions were using the discrete-time model.

Our main contributions are to give a new continuous-time quantum query algorithm
for any state conversion algorithm based on a slowly varying Hamiltonian, and also
provide a direct proof of its optimality based on Ehrenfest’s theorem. The correctness
of this algorithm relies on a spectra lemma leading to a rigorous proof of the quantum
adiabatic theorem for this Hamiltonian. This implies that the continuous-time quantum
query complexity of any state conversion problem is characterized by the adversary
bound.

All technical details can be found in the full version of this article [BR14].

1 Adversary lower bound in the continuous-time model

We consider quantum state conversion problems, where the goal is to convert a state
|ρx〉 taken from a set {|ρy〉 : y ∈ A} into the corresponding state |σx〉 in the set {|σy〉 :
y ∈ A}, the input x ∈ X ⊂ Σn being accessible via a black box (Σ is a finite set).
Since unitaries independent of the input x are free in the quantum query complexity
model, such problems are completely defined by the Gram matrices ρxy = 〈ρx| ρy〉 and
σxy = 〈σx| σy〉. The adversary bound for the quantum state generation problem (ρ, σ)
is defined as follows

Definition 1. [LMR+11, LR13](Adversary bound)

Adv?(ρ, σ) = max
Γ
‖Γ ◦ (ρ− σ)‖ subject to ∀j ∈ [n], ‖Γ ◦∆j‖ ≤ 1,

= γ2(ρ− σ|∆),

where ∆ = {∆1, . . . ,∆n}.

We first give a direct proof that this bound, originally considered for discrete-time
quantum query complexity, is also a lower-bound in the continuous-time model.

Theorem 1.1. For any |A| × |A| Gram matrices ρ, σ, we have

Qct
0 (ρ, σ) ≥ 1

2
Adv?(ρ, σ)

Qct
ε (ρ, σ) ≥ 1

2
min

σ′:FH(σ,σ′)≥
√

1−ε
Adv?(ρ, σ′).

While our proof is unsurprisingly similar to the proof in the discrete-time case, one
originality is that it uses Ehrenfest’s theorem [Ehr27], which expresses the evolution
of the expectation value of an observable 〈Γ〉t in terms of its commutator with the
Hamiltonian:

d 〈Γ〉t
dt

=
1

i
〈[Γ, H(t)]〉t +

〈
∂Γ

∂t

〉
t

.
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Indeed, we use the fact that the adversary matrix Γ is Hermitian and can therefore be
considered as an observable measuring the progress of the algorithm toward the target
state.

2 Adiabatic quantum query algorithm

We construct a new quantum query algorithm in the continuous-time model based on
the adiabatic principle of Born and Fock [BF28].

A quantum system with a time-dependent Hamiltonian remains in its instantaneous
eigenstate if the Hamiltonian variation is slow enough and there is a large gap between

its eigenvalue and the rest of the spectrum of the Hamiltonian.

Our adiabatic quantum query algorithm, which we call AdiaConvert(ρ, σ, ε), is ex-
tremely simple. Its slowly varying Hamiltonian consists in a difference of two projectors,
one being the (time-independent) oracle Hamiltonian Πx, and the other being a slowly
varying driver Hamiltonian Λ(s, ε) projecting on the vector space spanned by a set of
states {|Ψ−x (s, ε)〉 |x ∈ A}. These states, derived from the dual expression of the adver-
sary bound, are such that for s ∈ [0, 1], the 0-eigenstate of the total Hamiltonian Hx(s)
simply interpolates (up to a small error) between the initial state |0, ρx〉 and the target
state |1, σx〉 (an additional qubit is introduced to make these states orthogonal). We
therefore obtain the following:

Proposition 1. For any state conversion problem (ρ, σ) and error ε such that Adv?(ρ, σ) ≥
ε, the algorithm AdiaConvert(ρ, σ, ε) converts |0, ρx〉 (for any x ∈ A) into a state ε-
distant to |1, σx〉 in time T = O(Adv?(ρ, σ)/ε2).
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