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Deciding whether a given quantum channel has a positive capacity is a non-trivial problem – there does
not exist a unique criterion to determine whether the quantum capacity of a given channel is zero. Classi-
cal channels with zero capacity are uninteresting in the information-theoretic sense. In contrast, quantum
channels with zero capacity exhibit intriguing behavior as shown by the superactivation phenomenon [8]:
there exist examples of pairs of channels with zero quantum capacity, which, when used in tandem, allow
transmission of quantum information. One particular class of zero-capacity channels consists of antidegrad-
able channels. For such a channel, a post-processing of its environment can simulate the output of the
channel. The no-cloning theorem [1] ensures that such channels have zero quantum capacity. The simplest
example of the latter is a 50% erasure channel which with equal probability either transmits the input state
perfectly or replaces it with an erasure flag. However, there are other non-trivial examples of channels with
zero quantum capacity, e.g. the positive partial transpose (PPT) channels [2]. In addition, antidegradable
channels also have zero private capacity (unlike PPT channels), but whether they are the only non-trivial
quantum channels with this property is an open question. Therefore, the knowledge that a given channel
has zero quantum and private capacity is not sufficient to conclude that it is antidegradable. This leads us
to the following question:

(Q): Is there a setting in which one can obtain a complete operational characterization of
antidegradable channels?

We answer this question in the affirmative by constructing a game-theoretic framework which involves
the noisy quantum channel N (which we wish to characterize), a quantum public side channel S, and three
parties: Alice (the sender), Bob (the receiver) and Eve (the eavesdropper). Alice sends classical information
to Bob through N , whose environment is accessible to Eve. Alice also sends information through S, which
is accessible to both Bob and Eve.

The game is constructed as follows.

1. Alice chooses a letter x at random from a given finite alphabet X , and encodes it in a bipartite state,
say ρxAA0

.

2. The A part of the input is sent through N , while the A0 part is transmitted via S.

3. Bob then obtains the output of N while Eve receives the information that is transmitted to the
channel’s environment. In addition, they both receive the output of S.

4. The task now, for both Bob and Eve, is to guess which letter x Alice chose. Since Bob and Eve are
competing, they both adopt the optimal guessing strategy they have available. Correspondingly, the
reliabilities of their guesses is measured by the optimal guessing probabilities of the ensembles of states
they receive.

5. Bob wins the game whenever his guessing probability is strictly higher than that of Eve (i.e. in the
case of a draw, Eve wins).

The situation is depicted in the Figure below. To introduce the game formally, we start from the following
definitions:
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Figure 1: Structure of the guessing game: Alice communicates with Bob using the quantum channel N (i.e.
the one which we want to characterize) and a quantum channel S, which is public, in the sense
that it conveys the same output to Bob and Eve. A natural example of such a public channel is a
symmetric channel [16, 17, 18]. Bob plays the guessing game against Eve, who has access to the
environment of N (labelled by Nenv) and S.

Definition 1. A (finite) ensemble of quantum states m is defined as a triple (H,X , E), where H is a finite-
dimensional input Hilbert space, X = {x} is a finite indexing alphabet, and E = {px, ρx}x∈X is a collection
of quantum states ρx ∈ S(H) and probabilities px.

Consider now a quantum channel NA→B : HA → HB and an ensemble m = (HA,X , E). We can then
imagine the situation in which a sender (say, Alice) chooses a letter x ∈ X at random according to the
probability distribution px, prepares a quantum system in the corresponding state ρxA, and sends this through
N to a receiver (say, Bob), who has to guess the input letter chosen by Alice. This setup can be formally
described as follows:

Definition 2 (Dynamical guessing games). Let NA→B be a quantum channel, (HA,X , E) an ensemble.
The corresponding guessing game is defined as the task of correctly guessing letter x upon receiving N (ρxA).
The optimal probability of winning the game is given by

p∗(N ,m) := max
PB

∑
x∈X

px Tr[P xB N (ρxA)]. (1)

Equation (1) above measures ‘how good’ a given channel N is for communicating the information about
X encoded in m. Accordingly, given another channel M, with same input space but generally different
output space, one can say that ‘N is not worse than M with respect to m’ if p∗(N ,m) > p∗(M,m). By
extending this definition to every possible finite ensemble, we obtain the following partial ordering relation
between quantum channels:

Definition 3. Given two quantum channels with the same input space NA→B
α and NA→B′

β , we say that

‘NA→B
α is more informative than NA→B′

β ,’ and denote it as NA→B
α ⊇ NA→B′

β , whenever p∗(NA→B
α ,m) >

p∗(NA→B′
β ,m), for all finite ensembles m on HA.

Clearly, guessing games can be also played with more than one channel arranged ‘in parallel,’ as follows.
Consider for example two quantum channels NA→B and MA0→B0 and an ensemble defined on the tensor
product space HA ⊗HA0 , i.e. n = (HA ⊗HA0 ,X , E). Then, in analogy with (1), we have

p∗(NA→B ⊗MA0→B0 , n) = max
PBB0

∑
x∈X

px Tr[P xBB0
(NA→B ⊗MA0→B0)(ρxAA0

)]. (2)

It is important to stress that, as the input states ρxAA0
can be entangled, so the elements P xBB0

of the
decoding POVM are allowed to act globally on the output. By means of parallelized guessing games, a
stronger partial ordering relation can be introduced as follows:

Definition 4 (Strong information ordering). Given two quantum channels with the same input space NA→B
α

and NA→B′
β , we say that ‘NA→B

α is strongly more informative than NA→B′
β ,’ and denote it as

NA→B
α ⊇s NA→B′

β ,

whenever NA→B
α ⊗MA0→B0 ⊇ NA→B′

β ⊗MA0→B0, for all quantum side channels MA0→B0.
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In the above definition, we allow the comparison between Nα and Nβ to be made in parallel with any
possible quantum side channel MA0→B0 considered as an auxiliary communication resource. It is often
interesting, however, to constrain the side channel to belong to some restricted class of channels, typically
with reduced communication capability. As a trivial example, Definition 3 can be considered as a special
case of Definition 4, in which side channels are restricted to those which map all input states to the same
output state. We will be interested in the case in which the quantum side channel is a symmetric channel
S, ie. such that there exists another channel D such that S = D ◦ Nenv, where Nenv is a complementary
channel to S.

To state our main result (Theorem 1) which leads to the characterization of antidegradable channels, we
first introduce the notion of extension of a quantum channel: for any pair of quantum channels (Nα,Nβ) we
say that Nα is an extension of Nβ if Nβ = D◦Nα for some quantum channel D. Then our result can be stated
as follows: the channel is anti-degradable for any given input ensemble of states, the guessing probability
of the output ensemble of a channel is lower than that of its extension. We establish the above result by
first proving its analogue for statistical comparison of bipartite states and then using Choi isomorphism to
translate it to quantum channels.

Consider the case in which Nβ is the quantum channel N employed in the guessing game, and Nα is
the channel Nenv which is complementary to it. For this choice, our result (Theorem 1) implies that N is
antidegradable if and only if Eve always wins, regardless of the choice of Alice’s encoding strategy. In other
words, for any channel which is not antidegradable, there exists (at least) one encoding strategy which Alice
can choose to make Bob win the guessing game.

Main technical result and implications

Theorem 1. Let NA→B
α and NA→B′

β be two quantum channels. Then, the following are equivalent:

1. There exists a third quantum channel DB→B′ such that NA→B′
β = DB→B′ ◦ NA→B

α ;

2. NA→B
α ⊇s NA→B′

β ;

An interesting interpretation of Theorem 1 is obtained when Nβ and Nα are taken to be the channel N
(which we wish to characterize) and its corresponding complementary channel Nenv, respectively. In this
situation, consider the guessing game described above where, at each turn of the game (corresponding to
each use of the channel), Bob and Eve are asked to guess the input chosen by Alice. In this case, it is
natural to require the side-channel S to be symmetric, so that it serves as a public channel [16, 17, 18], since
it conveys the same information to Bob and Eve.

Theorem 1 then implies the following corollary which provides a complete characterization of antidegrad-
able channels in our game-theoretic framework:

Corollary 1. A quantum channel is not antidegradable if and only if there exists an encoding strategy for
Alice which results in Bob winning the game.

To summarize, we introduced a game-theoretic framework which allowed us to derive a necessary and
sufficient condition for a quantum channel to be antidegradable. We showed that for any quantum channel
which is not antidegradable, there exists an encoding strategy for which such a channel provides a strict
advantage for the two players over the adversary in the guessing game that we defined. The key ingredients
in the proof of this result are the tools of statistical comparison of bipartite quantum states, and the Choi
isomorphism.
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