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Abstract. Heisenberg’s original formulation of the uncertainty principle, forbidding error-free
measurement of one observable without disturbance to noncommuting observables, remains a
cornerstone of our understanding of quantum mechanics [Z. Phys. 43, 172–198 (1927)]. Re-
cently there has been an increased interest in and dispute regarding uncertainty relations which
formalize this principle, as well as appropriate means of defining measurement error and distur-
bance. Here we introduce clear and unambiguous measures of error and disturbance in terms of
a directly operational quantity, the probability of distinguishing the actual operation of a device
from its hypothetical ideal by any possible testing procedure. We then establish uncertainty re-
lations for both the joint measurability of two arbitrary observables and their error-disturbance
tradeoff. Our relations may be directly applied in information processing settings, for example
to infer that devices which can faithfully transmit information regarding one observable do not
leak any information whatsoever about conjugate observables to the environment.
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Heisenberg mentions two facets to the uncertainty principle in his original 1927 formulation.
The first restricts the joint measurability of observables, stating that noncommuting observables
can only be simultaneously determined with a characteristic amount of indeterminacy [6, p. 172].
The second describes an error-disturbance tradeoff, noting that the more precise a measurement
of one observable is made, the greater the disturbance to noncommuting observables [6, p. 175].

Precise formal statements corresponding to these two notions were constructed only much
later, due to the lack of precise mathematical descriptions of the measurement process in quan-
tum mechanics. Here we must be careful to draw a distinction between statements addressing
Heisenberg’s original notions of uncertainty from those, like the standard Robertson uncertainty
relation [13], which address the impossibility of finding a quantum state with well-defined values
for noncommuting observables. Such state-dependent formulations, especially entropic formula-
tions [1, 16, 2], have been of tremendous use in quantum information theory so far, in particular
in ensuring the security of quantum key distribution [15, 5]. For a short history of joint mea-
surability and the error disturbance tradeoff and further references, see the full version of this
submission [12].

In this submission we take a directly operational approach to the original versions of the
uncertainty principle, by quantifying error and disturbance in terms of the probability that the
actual behavior of the apparatus can be distinguished from a relevant hypothetical behavior, in
any experiment whatsoever. This results in state-independent measures which are conceptually
simple and unambiguous. We find new uncertainty relations for both joint measurability and
the error-disturbance tradeoff of two arbitrary observables of discrete quantum systems. Our
relations constrain the characteristics of possible measurement devices themselves, as opposed
to entire experimental setups, which include the properties of the input state. Thus they are
useful in constraining the behavior of channels as opposed to the properties of states. For
instance, we use our relations to show that if a quantum channel faithfully transmits elements
of a orthonormal basis, then the complementary channel can only poorly transmit the conjugate
basis. Directly operational versions of this notion have only been previously formalized for
special cases. It can be used, for example, to construct leakage-resilient classical computers
from fault-tolerant quantum computers [9].

Background. All uncertainty relations ultimately spring from the same source, the require-
ment that the measurement process itself be treated as dynamical process according to the laws
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of quantum mechanics. The relations presented here are both relatively simple consequences of
a basic structure theorem on quantum dynamics, the continuity of the Stinespring representa-
tion [8, 7]. We hence assume in the following that the measurement device is described by a
quantum channel, with mapping states in the input state space, S(HA), to states in the output
state space, S(HB), conditioned on the classical outcome of the measurement. As mentioned be-
fore, we are interested in the probability pdist(E , E ′) that one can distinguish the operation of one
apparatus E from another E ′ in any test whatsoever, when the two are chosen with equal a priori
probability. Since this probability ranges from 1

2 (we can always just make a random guess) to
1, it is more convenient to consider the distinguishability measure δ(E , E ′) := 2pdist(E , E ′) − 1.
Fortunately, this quantity is exactly equal to one half of the diamond norm difference between
the two channels. Note that we hence also allow for tests using inputs entangled with an ad-
ditional system; that this improves distinguishability is discussed in the full version of this
submission [12].

Joint measurability. Joint measurability of two observables X and Z is naturally concerned
with how well a single apparatusAX,Z can simultaneously approximate both ideal measurements,
call them QX and QZ . Any such device has of course two classical outputs, one for each
observable, which we denote by RX and RZ . The actual measurement MX of X only takes
the RX outcome into account, and similarly for MZ . Then, we are specifically interested
in the two types of error inherent to the apparatus, namely how well the marginals of the
apparatus compare to the ideal measurements, quantified by εX(AX,Z) := δ(MX ,QX) and
εZ(AX,Z) := δ(MZ ,QZ).

We expect that, for incompatible or complementary observables, these quantities cannot both
be small. We may quantify the complementarity of X and Z in terms of their eigenstates
|ϕx〉 and |ϑz〉, as follows. Letting r(X;Z) := 1√

2

(
1−minx maxz |〈ϕx|ϑz〉|2

)
, the measure of

complementarity is c1(X,Z) := max{r(X;Z), r(Z;X)}. Then we have the following uncertainty
relation.

Theorem 1 (Joint Measurability). For any apparatus AX,Z which attempts to jointly measure
two finite-dimensional observables X and Z,

εX(AX,Z)
1
2 + εZ(AX,Z)

1
2 ≥ c1(X,Z).(1)

The full proof can be found in [12], but let us mention that the main idea is to model
the approximate joint measurement as a quantum channel, and then use the aforementioned
structure theorem on quantum dynamics, the continuity of the Stinespring representation: Since
MX and MZ are defined from the same apparatus, they share a Stinespring isometry, say V .
This isometry is close to appropriate isometries WX and WZ for QX and QZ as measured by εX
and εZ , respectively. By the triangle inequality for the isometry distance, we now have a relation
for the distance between WX and WZ , which can be evaluated by making use of properties of
the ideal measurements.

Error disturbance tradeoff. Next we turn to the tradeoff between the approximation error of
a given apparatus AX for measuring observable X and the disturbance caused to the observable
Z. Again AX produces the classical result in RX , and the approximation error εX(AX) is
precisely the same as defined in the previous section. Now we are also interested in the quantum
system S′ containing the post-measurement state produced by the action ofAX , and in particular
the action of the observable Z. Complete disturbance to Z amounts to its eigenstates all being
mapped to a fixed output. In the worst case, this holds even when conditioning on the classical
outcome of the AX apparatus. That is, it is not possible to perform some subsequent “recovery”
operation conditional on the measurement outcome which restores the Z observable; this stronger
notion of disturbance was recently used by Buscemi et al. [3]. Our measure of disturbance is
how well the action of AX approximates a channel with a constant output on both RX and
S′ when both channels are input with eigenstates of Z (or mixtures thereof). To ensure that
all inputs to AX are mixtures of Z eigenstates, we may first perform the ideal non-selective

measurement Q\
Z , which measures the the state in the Z basis and discards the result. Then
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the post-measurement state is necessarily diagonal in the Z basis. Therefore, the disturbance

is large if the map AX ◦ Q\
Z is close to a map C which has constant output for any input state

%. We are thus led to a disturbance measure of the form ηZ(AX) := d−1
d −minC δ(AX ◦ Q\

Z , C),
since a better approximation means greater disturbance. We note that the quantity is always
positive [12]. As with joint measurement, we expect that both εX(AX) and ηZ(AX) cannot
both be small if X and Z are incompatible. We again measure complementarity in terms of the
eigenvectors, but this time by the function c2(X;Z) := d−1

d −maxz
∑

x{
1
d − |〈ϕx|ϑz〉|2}+, where

{x}+ = max{x, 0} and d = dim(HS). Then we have the following uncertainty relation, whose
proof is again based on the continuity of the Stinespring representation and can be found in the
full version.

Theorem 2 (Error-Disturbance Tradeoff). For observables X and Z, any apparatus AX which
attempts to gain information about observable X satisfies

√
2 εX(AX)

1
2 + ηZ(AX) ≥ c2(X;Z).(2)

Applications in Quantum Information Processing. The action of every quantum channel
N can be described by letting the input system interact with some environment, and then
disregarding the state on this additional system. If we instead disregard the original output
system, the corresponding quantum channel is called the complement N ] of N .

A useful tool in the construction of quantum information processing protocols is the link be-
tween reliable transmission of X eigenstates through a channel N and Z eigenstates through N ],
particularly when the observables X and Z are maximally complementary, i.e. |〈ϕx|ϑz〉|2 = 1

d
for all x, z. Due to the uncertainty principle, we expect that a channel cannot reliably transmit
the bases to both the environment and the actual output system, since this would provide a
means to simultaneously measure X and Z. This link has been used by Shor and Preskill to
prove the security of quantum key distribution [14] and by Devetak to determine the quantum
channel capacity [4]. Entropic state-preparation uncertainty relations from [1, 16] can be used
to understand both results, as shown in [10, 11]. However, the above approach has the serious
drawback that it can only be used in cases where the specific X-basis transmission over N and
Z-basis transmission over N ] are in some sense compatible and not counterfactual ; because the
argument relies on a state-dependent uncertainty principle, both scenarios must be compatible
with the same quantum state. Using Theorem 2 we can extend the method above to counter-
factual uses of arbitrary channels N . If acting with the channel N does not substantially affect
the possibility of performing an X measurement, then Z-basis inputs to N ] yield an essentially
constant output.

Corollary 1. Given a channel N and complementary channel N ], suppose that there exists
a measurement ΛX such that δ(QX ,ΛX ◦ N ) ≤ ε. Then there exists a constant channel C
such that δ(N ] ◦ Q\

Z , C) ≤ 2
√
ε + d−1

d − c2(X;Z). For maximally complementary X and Z,

δ(N ] ◦ Q\
Z , C) ≤ 2

√
ε.

This formulation is important because in more general cryptographic scenarios we are in-
terested in the worst-case behavior of the protocol, not the average case under some particular
probability distribution. For instance, in [9] the goal is to construct a classical computer resilient
to leakage of Z-basis information by establishing that reliable X basis measurement is possible
despite the interference of the eavesdropper. However, such an X measurement is entirely coun-
terfactual and cannot be reconciled with the actual Z-basis usage, as the Z-basis states will be
chosen deterministically in the classical computer. An additional benefit of Corollary 1 in this
scenario is that we may allow the classical computer to be noisy, i.e. undergo errors which flip
the Z basis states. Leakage-resilience is neverthess ensured if reliable X basis measurement is
still possible.

Motivated by these considerations, we expect that our relations and its implications will turn
out to be useful for the study of problems within Quantum Information Theory, as it is the case
for entropic formulations of the uncertainty principle.
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