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Shannon discussed the communication problem in the setting of zero errors and connected this
problem to the graph theory [1]. It turns out that the zero-error capacity of a channel only depends
on its induced confusability graph G and it suffices to discuss the Shannon capacity of a graph G:
Θ(G) = supm

m
√
α(G�m), where α(G) is the independence number of G and G�m is the m-fold

strong product ofGwith itself. However, Θ(G) is difficult to determine, even for a simple graph, such
as cycle graphs Cn of odd length. Lovász proposed an upper bound ϑ(G) on the Shannon capacity of
a graph G [2], and it is tight in some cases. For example, Θ(C5) = ϑ(C5). Although Θ(Cn) for n ≥ 7
are still unknown, it is close to ϑ(Cn). However, Haemers showed that it is possible that there is a gap
between ϑ(G) and Θ(G) for some graphs [3, 4]. It is desired to find additional operational meanings
for the Lovász ϑ function.

Recently the problem of zero-error communication has been studied in quantum information the-
ory [5, 6]. Some unexpected phenomena were observed in the quantum case. For example, very noisy
channels can be super-activated [7, 8, 9, 10]. In general, entanglement can increase the zero-error
capacity of classical channels [11, 12]. Again, entanglement-assisted zero-error capacity is upper-
bounded by the Lovász ϑ function [13]. For classical channels, it is suspected that entanglement-
assisted zero-error capacity is exactly the Lovász ϑ function [6].

In [14], Cubitt et al. considered non-signalling correlations in the zero-error classical commu-
nications. Duan and Winter further introduced quantum non-signalling correlations (QNSCs) in the
zero-error information theory [15]. QNSCs are completely positive and trace-preserving linear maps
Π : L(Ai) ⊗ L(Bi) → L(Ao) ⊗ L(Bo) so that the two parties A and B cannot send any informa-
tion to each other by using Π. Resources, such as shared randomness, entanglement, and classical
non-signalling correlations, can be considered as special types of QNSCs.

Suppose N : |k〉〈k| → ρk is a classical-quantum (C-Q) channel that maps a set of classical states
|k〉〈k| into a set of quantum states ρk ∈ L(B). The one-shot zero-error capacity of the C-Q channel
N assisted by a QNSC Π is equivalent to the largest integer M so that a noiseless classical channel
that can send M messages can be simulated by the composition of N and Π. In [15], Duan and
Winter showed that the one-shot QNSC-assisted zero-error classical capacity is the integral part of
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the solution Υ(N ) to the following SDP with variables sk ∈ R and Rk ∈ L(B):

Υ(N ) = max
∑
k

sk

subject to: sk ≥ 0,

0 ≤ Rk ≤ sk(I− Pk), (1)∑
k

(skPk +Rk) = I,

where Pk be the projector onto the support of ρk and I is the identity operator. Moreover, they
proved that the asymptotic zero-error classical capacity of a QNSC-assisted C-Q channel is exactly
log ϑ(G) when ρk are induced from an optimal orthonormal representation (OOR) of a graph G. An
orthonormal representation of a graph G of n vertices is a set of n unit vectors {u0, · · · ,un−1} ∈ Cd

for some d so that their inner product 〈ui,uj〉 = u†iuj = 0 if vertices i and j are not neighbors. Its
value is defined as θ({uj}) = minc:||c||=1 maxj

1
|c†uj |2 . The Lovász function ϑ(G) is defined as the

minimum value over all representations and a representation with value ϑ(G) is called optimal.
In this article we consider the type of C-Q channelN : |k〉〈k| → |uk〉〈uk|, where {u0, · · · ,un−1}

is an OOR of a graph G in some Hilbert space B. (For convenience, we use the Dirac notation
|u〉 to denote the quantum state corresponding to the vector u, and vice versa.) It is easy to see
that α(G) ≤ Υ(N ) ≤ ϑ(G). We will provide a class of circulant graphs, defined by equal-sized
cyclotomic cosets, so that the one-shot QNSC-assisted zero-error classical capacity of their induced
C-Q channels are the integral part of

Υ(N ) = ϑ(G).

Moreover, since ϑ is multiplicative, the asymptotic QNSC-assisted zero-error classical capacity of
these C-Q channels are

C0,NS(N ) = lim
m→∞

1

m
log Υ(N⊗m) = log ϑ(G).

This provides a more straightforward operational meaning for the Lovász ϑ function.
We first provide an orthonormal representation for any circulant graphs. A circulant graph G =

X(Zn, C) has an edge set {(i, j) : i− j ∈ C}, where C is a subset of Zn \ {0}, called the connection
set, and −C = C. The eigenvalues of the adjacency matrix of G are λk =

∑
j∈C e

2πijk/n. Let

u0 =
1√
ϑ(G)

(
1,

√
λ1 − λmin

λmax − λmin

, · · · ,
√
λn−1 − λmin

λmax − λmin

)T

and uk = Uku0, for k = 0, · · · , n − 1, where U = diag
(
1, e−2πi/n, · · · , e−2(n−1)πi/n

)
is a unitary

operator. Then {uk} is an orthonormal representation of the circulant graphG. IfG is edge-transitive,
then {uk} is an OOR.

Cyclotomic cosets usually appear in the application of coding theory to determine minimal poly-
nomials over finite fields or integer rings [16]. We use a more general concept here. Let Z×n =
(Z/nZ)× denote the multiplicative group of Zn, which consists of the units in Zn and its size is deter-
mined by the Euler’s totient function: |Z×n | = ϕ(n). Suppose q ∈ Z×n . The cyclotomic coset modulo
n over q which contains s ∈ Zn is

C(s)={s, sq, sq2, · · · , sqrs−1},
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where rs is the smallest positive integer r so that sqr ≡ s mod n. The subscript s is called the
coset representative of C(s). The cyclotomic cosets are well-defined: C(α) = C(β) if and only if
α = βqc mod n for some c ∈ Z. Hence any element in a coset can be the coset representative.
As a consequence, the integers modulo n are partitioned into disjointed cyclotomic cosets: Zn =⋃t
j=0C(αj), where {α0 = 0, α1, · · · , αt} is a set of (disjointed) coset representatives. If C(1) = C(−1),

then we can generate the circulant graph G = X(Zn, C(1)). Assume further that these cyclotomic
cosets are equal-sized, except C(0) = {0}. That is, |C(α)| = |C(1)| for any α 6= 0, and n = t|C(1)|+ 1.
A circulant graph defined by these cyclotomic cosets has some interesting properties that are key
to the proof of our main theorem: the nontrivial eigenvalues are indexed by the cyclotomic coset
representatives and have equal multiplicity.

Next we explicitly construct feasible solutions to the SDP (1) when the C-Q channelN is induced
by these circulant graphs. Let sk = ϑ(G)

n
, Rk = UkR0U

−k, and

R0 =
1

n

(
I−

n−1∑
j=0

xjPj

)
,

where xj =
λjβ−λβ
λ0−λβ

, given λβ = λmin for some β ∈ Z×n . Then the SDP (1) is solved with Υ(N ) =

ϑ(G). A central part of the proof is using the Perron-Frobenius theorem to show that R0 is positive
semi-definite.

Finally we characterize the graphs defined by equal-sized cyclotomic cosets. A necessary condi-
tion is that |C(1)| is a common divisor of ϕ(d) for all d|n and d > 1. It remains to find conditions so
that C(1) = C(−1).

For any odd n ≥ 3, there exists a trivial connection set C(1) = {1, n − 1}, which is a cyclotomic
coset modulo n over n− 1, and it defines the cycle graph Cn. SupposeN is the C-Q channel induced
by the OOR of the cycle graph Cn. Then Υ(N ) = ϑ(Cn) =

n cos π
n

1+cos π
n
.

When n = pr is a prime power, Z×pr is cyclic. Let Z×pr = 〈α〉 for α ∈ Zp, and α is of order ϕ(pr).
Consequently, −1 ≡ αϕ(p

r)/2. Therefore, −1 ∈ C(1) = 〈q〉 if q = αb for some b | (ϕ(pr)/2), and then
|C(1)| = ϕ(pr)

b
. Then the graph X(Zpr , 〈αp

r−1〉) is defined by equal-sized cyclotomic cosets.
The case is simpler when n is a prime. Let p = 2st + 1 be a prime. Suppose Z∗p = 〈α〉. Then the

graph X(Zp, 〈αt〉) is defined by equal-sized cyclotomic cosets.
When t = 2, the cosets lead to exactly the Paley graphs or the quadratic residue graphs QRp.

A nonzero integer a is called a quadratic residue modulo n if a = b2 mod n for some integer b;
otherwise, a is a quadratic nonresidue modulo n. LetQ denote the set of quadratic residues modulo p.
ThenQRp = X(Zp, Q) [17]. The Paley graphs are self-complimentary and consequently Θ(QRp) =
ϑ(QRp) =

√
p [2, Theorem 12]. Suppose N is the C-Q channel induced by the OOR of the Paley

graph QRp. Then Υ(N ) = ϑ(QRp) =
√
p.

When t = 3, the cosets lead to the cubic residue graphs CRp[19]. A nonzero integer a is called
a cubic residue modulo p if a = b3 mod p for some integer b. The cyclotomic coset C(1) consists
of cubic residues. CRp = X(Zp, C(1)) has three nontrivial eigenvalues, which can be found by the
formula for cubic Gauss sum. These three eigenvalues are the roots of x3 − 3px − ap = 0, where
4p = a2 + b2 and a ≡ 1 mod 3 [20]. Currently the closed form for ϑ(CRp) is still unknown.

The type of circulant graphs defined by equal-sized cyclotomic cosets bear very a strong symme-
try. It is interesting to see if there are other graphs that have this property. For example, we may
consider (strongly) regular graphs.
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