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1 Introduction

Quantum technology promises revolutionary advantages in information processing and transmission
compared to classical technology; however, determining which specific resources are needed to
surpass the capabilities of “semi-classical machines” (see Fig. 1) remains often a nontrivial problem.
To address such a problem, one first needs to establish the best classical solutions, which set
benchmarks to be beaten by any implementation claiming to harness non-local quantum features
for enhanced performance.

In this work[1] we develop a general formalism to obtain benchmarks for the probabilistic
quantum protocols with input states generated by a group action, which are called the Gilmore-
Perelomov generalized coherent states[2, 3, 4]. We explore the possible application of the general
benchmark for a large variety of quantum systems, covering discrete variable systems and continu-
ous variable (Gaussian and non-Gaussian) systems. The benchmarks derived are probabilistic[5, 6],
which means that we give Alice and Bob, who are implementing a classical measure-and-prepare
procedure to emulate the action of a particular quantum channel on an input set of states, the
freedom to discard some unfavourable trials. (See Fig. 1 for the scenario.)
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Figure 1: “Semi-classical machines”. Defined as states transform process without non-local quan-
tum operations, namely Alice and Bob perform a measure-and-prepare strategy to fulfill their task,
where Alice can perform any measurement (arbitrary POVM) on the input state and informs Bob
by classical communication. Note that the machines we consider are probabilistic, i.e. Alice is
allowed to announce inconclusive measurement outcomes.

The benchmarks set the ultimate bounds that need to be surpassed by quantum implemen-

*email:yangyx13@Qmails.tsinghua.edu.cn



tations claiming to exploit authentic quantum resources to attain classically unreachable perfor-
mances. Consequently, this work provides straightforward criteria to detect genuine non-local
quantum operations in a wide of experiments, varying from the teleportation of finite dimensional
quantum systems, to the amplification of weak optical signals.

2 Benchmarks for the probabilistic processing of general-
ized coherent states

The Gilmore-Perelomov coherent state |¢4)[2, 3, 4], defined by acting the irreducible unitary rep-
resentation Uy of a group G on a unit vector |¢) in some Hilbert space H, covers a broad class of
quantum states, among which the most known case is the coherent state of the harmonic oscillator
la) := D(a)|0), where D(c) is the displacement operator. We consider the task of transforming
N copies of an input coherent state |¢4) € H into M copies of another, possibly different coherent
state |1y) € K. Meanwhile we assume that the input state is priorly distributed according to a
probability distribution p,(g) defined in the certain form

p’y(g) = d'y|<¢’y|¢%g>|2 (1)

where | ) 1= U, 4|¢~) is a coherent state in some Hilbert space 7~ and d, is the normalization
constant. As a figure of merit, we consider the maximization of the fidelity between the output
state produced by the device and the target state |¢g>®M , precisely maximizing
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over all possible non-deterministic measure-and-prepare protocols A4 (p) := |,
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Gyes C G ({Fy},c stands for the measurement).

Based on previous works [5, 6], we derived the following benchmark for the probabilistic pro-
cessing of generalized coherent states.

Theorem 1. The probabilistic benchmark for the transformation |¢,)®N — [1hg)®M is given by:
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Here py(g) is the prior distribution of the input state, given in Eq. (1).

(2)

The general benchmark (2) has a wide range of applications from the storage or teleportation
of qubit states to the amplification of the coherent light. We will show them in sequence for the
following sections.

3 Benchmarks for qudit states

We begin introducing the application of the general benchmark (2) from the finite dimensional
quantum ensembles. Consider benchmarking devices that transform NN identical d-level quantum
systems, which are represented by qudit states |1,), g € SU(d) , into M approximate copies. The
probabilistic benchmark for this task can be derived from Eq. (2) as

(N+ﬂ+d—1)
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Notice that (Z) = % and [ is a non-negative real parameter for the prior distribution

p(g) o [{(]10,)|?? of the input state. This benchmark provides important criteria in a wide range
of setups. For instance, taking d = 2 in Eq. (3) we see the benchmark for qubit state tele-
cloning, which reads Fc(tele)(ﬁ) =(N+8+1)/(N+ M+ B+1). When 8 = 0 this reproduces the
benchmark for both deterministic and probabilistic tele-cloning without prior knowledge known in
the literature [7, 8].



4 Benchmarks for single-mode Gaussian states

Next we explore the benchmarks for continuous variable states. In this section we present the
benchmark for the single-mode Gaussian state. A general pure single-mode Gaussian state is a
displaced squeezed state, written in the form |a, £) := D(«)S(€)|0), where D(a) := exp(aal —a*a)
is the displacement operator and S(£) := exp [3(¢a™? — £*a?)] is the squeezing operator. The
single-mode Gaussian state is fully characterized by the displacement a € C and ¢ = se’? € C
where s € RT is the squeezing degree and 6 € [0, 2) is the squeezing phase.
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which follows the general prescription of Eq. (1), the benchmark of the single-mode Gaussian state

is
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This benchmark helps to detect genuine non-local quantum operations in experiments concerning

single-mode continuous variable resources, and it can be straightfowardly reduced to the bench-
marks for the single-mode coherent state and the single-mode squeezed vacuum state.

Consider the prior distribution py g(e, §) :=
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C

5 Benchmarks for non-Gaussian squeezed states

The benchmark has applications not only in the probabilistic processing of discrete variable or
Gaussian states, as described above, but also in the non-Gaussian state processing. Specifically,
the benchmark (2) can be used to derive the benchmark for a family of squeezed states.

Among this family of states there is the squeezed single-photon state S(¢)[1), which can be
achieved by squeezing the single-photon Fock state |1). Consider the probabilistic processing of
the squeezed single-photon state distributed according to the prior pg(€&) o< [(1]5(€)[1)[2#+2), the
benchmark reads

pes __ 3N+B

¢ A(IN+M)+8
When the amount of squeezing is low, the squeezed single-photon state is a good approximation
of the odd Schrodinger cat state |thodd cat(@)) := M[& 10, 11]. Hence, when the prior

V2(1—e21e1?)
distribution of the squeezing parameter is concentrated in a small region around & = 0, the bench-
mark derived for single-photon squeezed states is close to the corresponding benchmark for odd
cat states.

Another set of non-Gaussian states that can be benchmarked by Eq. (2) is the unbalanced
two-mode squeezed states S (€)|m)|0), which is obtained through a two-mode squeezing process
5@ (&) = exp[—£*aras + £alal] on the two-mode Fock state |m)|0). The probabilistic benchmark
for the unbalanced two-mode squeezed state S (¢)|m)|0) is

ptvs) _ _ (MA YN+
¢ (m+1)(N+M)+p8

The unbalanced two-mode squeezed state is regarded as a valuable non-Gaussian resource when one
plan to generate arbitrary continuos variable states using Gaussian processes[12]. Consequently,
the ability to provide the benchmark for this class of continuous variable states will shed light on
the study in the processing for arbitrary two-mode continuos variable states.

6 Conclusions

In this work we derive a general and useful technique to provide benchmark for probabilistic
quantum processes, including teleportation, cloning and amplification. Specifically, our technique
can be applied to all Gilmore-Perelomov generalized coherent states[2, 3, 4], covering the qudit
state, the one-mode Gaussian state and some non-Gaussian squeezed states.
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