Noisy Interactive Quantum Communication arXiv: 1309.2643

Gilles Brassard, Ashwin Nayak, Alain Tapp, <u>Dave Touchette</u> and Falk Unger

Barcelona, QIP 2014

Problem

- Simulate highly interactive quantum protocols over noisy channels
 - Positive communication rate
 - Positive adversarial error rate

Problem

- Simulate highly interactive quantum protocols over noisy channels
 - Positive communication rate
 - Positive adversarial error rate

Noiseless Interactive Quantum Protocols

- Well-studied: Quantum communication complexity
 - ▶ 2 Models for computing classical $f : X \times Y \rightarrow Z$

- Exponential separations in communication complexity
 - Classical vs. quantum
 - ► N-rounds vs. N+1-rounds

Noisy Quantum Communication

• Well-studied for unidirectional data transmission

- Quantum information theory: Random noise, à la Shannon
- Communication rate R = k/n
- Quantum coding theory: Adversarial noise, à la Hamming

• Error rate
$$\delta = t/r$$

Noisy Interactive Quantum Communication

- Communication rate R = k/n
- Error rate $\delta = t/n$

Noiseless protocol

• Simulation protocol

Naive Strategy

• Encode each transmission into a QECC

- Worst case interaction: 1 qubit communication
 - Random noise: communication rate $\rightarrow 0$
 - Adversarial noise: tolerable error rate $\rightarrow 0$
- Classical protocols: same problems but... [Schulman'96]
 Simulation protocols with *positive* communication and error *rates*

Problems for Quantum Simulation

- Classical information can be copied and resent if destroyed by noise
 - Yao model problem: no-cloning theorem
- Cleve-Buhrman model: communication is classical
 - Problem: quantum measurements are irreversible
- Can we do better than naive (block coding) strategy?

Noisy Communication Models

- Consider 3 distinct noisy communication models
- Noisy quantum communication, no shared entanglement
 - Noisy analogue to the Yao model
- Noisy classical communication, perfect shared entanglement
 - Noisy analogue to the Cleve-Buhrman model
- Noisy classical communication, noisy shared entanglement
 - Noisy EPR pairs (Werner states)

Results

- Simulations in all 3 models
- Positive communication rates
 - Yao model: $O(\frac{1}{Q})$ overhead over depolarizing channel
 - Cleve-Buhrman: $O(\frac{1}{C})$ overhead over binary symmetric channel
- Tolerate positive adversarial error rates
 - Yao model: $\frac{1}{6} \epsilon$
 - Cleve-Buhrman model: $\frac{1}{2} \epsilon$, optimal
- First interactive analogue of good quantum code

Results

- Noisy entanglement: Simulation for any non-separable Werner state
- Cleve-Buhrman model: $O(\frac{1}{C})$ overhead is optimal
- Yao model: $O(\frac{1}{Q})$ overhead is *not*
 - Simulation for some Q = 0 depolarizing channel!

Main Ingredient : Teleportation Protocol

- State after Bell measurement: $X^{x}Z^{z}\left|\psi
 ight
 angle$
- Bob decodes with Z^{z'}X^{x'}
- Obtains $\pm X^{x+x'}Z^{z+z'}\ket{\psi}$
- Noisy classical communication ightarrow Pauli error on $|\psi
 angle$

Solutions to Quantum Simulation Problems

- Cleve-Buhrman model: Make everything coherent
 - $\blacktriangleright \ Measurements \rightarrow pseudo-measurements$
- Yao model: Use teleportation to avoid losing quantum information
- Evolve sequence of noiseless unitaries
- Everything on joint register is a sequence of reversible operations

Quantum Simulation Protocol

- Yao: To distribute EPR pairs, use tools from quantum coding theory
- For interaction, use tools from classical interactive coding
- Can we use classical simulation protocols: No!
 - Classical goal: Alice and Bob agree on transcript
 - Here: Contains mostly random teleportation outcomes

Tools for Classical Simulation Protocols

• Tree representation for communication protocols

- Tree codes
 - Online codes
 - Self-healing property
- Blueberry codes
 - Randomized error detection codes
- Classical strategy: Simulate evolution in protocol tree
 - \blacktriangleright Error \rightarrow go back to last agreement point

Further Problems for Quantum Simulation

- For quantum protocols, no protocol tree to synchronize on
 - Can still synchronize on sequential structure of quantum protocol
- Cannot restart with a copy of previous state (no-cloning)
 - Need to rewind unitaries, leading to more errors

Classical Information Sent over Noisy Channel

- Teleportation measurement outcome : $x_M, z_M \in \{0, 1\}$
- Teleportation decoding operation : $x_D, z_D \in \{0, 1\}$
- Direction for evolution of noiseless protocol : $M \in \{-1, 0, +1\}$
- Index of noiseless protocol unitary : $j \in [n+1]$
 - Implicit: $j_{\ell} = \sum_{i < \ell} 2M_i + M_{\ell}$ (+1 for Bob)

Example Run of Simulation Protocol

Conclusion : Summary

- Communication complexity robust under noisy communication
- Tolerate maximal error in perfect shared entanglement model
 - Requires new bound on tree codes
- Positive communication rates for some Q = 0 depolarizing channel
 - Separation between standard and interactive quantum capacity

Further Research Directions

- Adaptation of classical results to quantum realm
 - Computationally efficient protocols against adversarial noise
 - High communication rates for low random noise
- Upper bound on interactive quantum capacity
- Improve tolerable error rate in quantum model
 - Possibly by developing a fully quantum approach
 - Construction of quantum tree codes?
- Integration into larger fault-tolerant framework