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Motivation: QIP 2014 Talks 
and Posters using this 

Quantum Rényi Divergence
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New Rényi conditional entropy proposed, 
specializes to known quantities (Team Müller-Lennert)

Contributions

Sep’12 Jun’13

QCrypt tutorial

Sep’13
...

1309.32281306.3142v2

1306.5358
1306.5920

1306.3142v1
arxiv: 1306.1586

Independent discovery of the divergence as a 
proof tool for strong converse (Team Wilde)

Properties and conjectures released (Team Blue)

All conjectures resolved (Frank&Lieb, Beigi, Team Blue)

Operational interpretation in hypothesis testing 
discovered (Team Mosonyi)
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Classical Rényi Divergence

Given two probability distributions   and   :

Operational significance in information 
theory, for example in the study of error 
exponents and cutoff rates.

Versatile tool in proofs, for example to derive 
one-shot bounds.
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Quantum Rényi Relative Entropy
Petz investigated quantum generalizations of 
Csiszár’s  -divergences.

For two quantum states   and   :

f

⇢ �

D↵(⇢k�) :=
1

↵� 1

log tr

�
⇢↵�1�↵

�

Desirable properties in the range           
due to the operator concavity/convexity 
of

Operational significance in the direct part of 
quantum hypothesis testing

f : t 7! t↵

↵ 2 [0, 2]

Friday, February 7, 14



For                      and                 , 

Quantum Rényi Divergence / 
Sandwiched Rényi Divergence

eD↵(⇢k�) :=
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For        and if    is not invertible, set
              and take the limit        .

generalized inverse if         
     otherwise 
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Quantum Rényi Divergence / 
Sandwiched Rényi Divergence

For the following: tr(⇢) = 1

Divergence is related to the Schatten norm 
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Two-Parameter Family

Both definitions can be seen as special cases 
of a two-parameter family of divergences:
(Jaksic et al. / Audenaert&Datta)
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Clearly,              and              .D̄↵,1 ⌘ D↵ D̄↵,↵ ⌘ eD↵

Friday, February 7, 14



 Limits and Special Cases of

Quantum Relative Entropy,        :

Datta’s Max Relative Entropy,          :↵ ! 1

D
max

(⇢k�) = eD1(⇢k�) = inf
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� 2 R

�� ⇢  exp(�)�
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Continuous in   and  

Additivity: 

Positive Definite: For two quantum states,
                with equality iff*       . 

Monotonically non-decreasing in    (also: Beigi)

Scaling: 

*Domination:         implies

Properties of
eD↵(⇢k�) :=
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log tr
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Data-Processing Inequality

For any completely positive trace-preserving 
map   and          , we haveE

Müller-Lennert et al. / Wilde et al. :
Frank+Lieb:
Beigi:
(Mosonyi+Ogawa:         )

↵ � 1

↵ 2 [1, 2]
↵ � 1/2

↵ � 1

↵ � 1/2

Eeat
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Asymptotic Achievability (       )

For any sequence of measurement maps 
(quantum-to-classical channels), we have

Mn
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This allows to lift many properties from the
classical domain.

↵ > 1
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Hypothesis Testing
State discrimination using POVM

↵n(T ) := tr
�
⇢⌦n(I� T )

�
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�⌦nT

�

{T, I� T}

Critical rate (quantum Stein’s Lemma):
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�
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Quantum Hoeffding Bound

↵n,r := min

�
↵n(T )

��T : �n(T )  exp(�nr)
 

We are interested in the quantity

Yields operational interpretation of “old” 
Rényi relative entropy

Rate below critical rate (Hayashi’07/Nagaoka’06):
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Strong Converse Regime

If               , we expect           to drop 
exponentially in   .

r > D(⇢k�) 1� ↵n,r

n

We show that
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n
log(1� ↵n,r) = sup
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↵

⇣
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⌘

Yields an operational interpretation of the 
“new” Rényi divergence

More direct interpretation (without 
optimization) using cut-off rates
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Strong Converse Capacity 
Minimum of all   , such that every code with 
rate exceeding    leads to an asymptotically 
vanishing probability of successful decoding.

R
R

Entanglement-breaking (EB) and Hadamard 
channels: Holevo and regularized capacity agree

rate
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0
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C1 C1
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Friday, February 7, 14



   -Information Radius
For a single use of the channel, the success 
probability is bounded by, for any       ,
(proof due to Polyanskiy&Verdú’10 / Sharma&Warsi’13)

↵ > 1

where    is the number of different messages, 
and the   -information radius is

M
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Holevo capacity: C1 = e�1(WA!B)
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Sub-Additvity ⇒ Strong Converse
For   uses of the channel and                 :M = exp(nR)

n

Sub-additivity ⇒ all three capacities agree
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For any                    , we find
such that                     (by continuity)
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   -Information Radius for EB 
Channels is Sub-Additive

Using the EB CPM                           ,
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Maximal output norm of EB CPM (with any 
CPM   ) is multiplicative (King’03):bE
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    -Information Radius for EB 
Channels is Sub-Additive (II)
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Conditional Rényi Entropy
For a bipartite state      , we define

Classical case corresponds to Arimoto’s 
conditional Rényi entropy

.

⇢AB

eH↵(A|B)⇢ := sup
�B

� eD↵(⇢ABkIA ⌦ �B)

Max-Entropy (König et al.): H
max

⌘ eH 1
2

Collision Entropy (Renner): eH2

Hmin ⌘ eH1Min-Entropy (Renner):

H ⌘ eH1von Neumann Entropy:
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Duality and Uncertainty
For a tripartite pure state       , we find⇢ABC

Includes known relations for Min-/Max-
Entropy and von Neumann entropy.

.eH↵(A|B) + eH�(A|C) = 0,
1

↵
+

1

�
= 2

The proof is implied by properties of the conditional entropy together with a 
proof framework due to Coles et al.’12 (also Berta++’10, Tomamichel&Renner’11)

Implies full side information generalization of 
Massen-Uffink uncertainty relations:

eH↵(X|B) +

eH�(Y |C) � log

1

c
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