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Knots and links

Mathematically, a knot is an embedding of S* into R3 such that it
is invariant up to ambient isotopy.

A link is an embedding of many copies of S! i.e., many pieces of
string, which could be knotted with each other.
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@ A link invariant is a function from the link (to the complex
numbers) such that if two links are equivalent, then the
numbers are the same.

@ Possible that two non-equivalent links have the same numbers.



Braid group

B, is generated by o; and their inverses subject to the following
conditions.
0i0j = 00 for |I —_]’ > 2

and
0i0i+10; = 0j4+10i0j+1



Links from braids

@ Any link can be formed from a braid by closing the strands of
the braid.

@ Braids on n strands form an infinite group called the braid
group (B,) generated by o; and 071.
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(c) The trace closure. (d) The plat closure.



Algebraic approach to link invariants

@ If one has a braid group representation, then by taking the
normalized trace of b one can construct a link invariant.

@ The trace should satisfy Markov properties.

@ One way to produce braid group representations is via the Yang
Baxter Equation (YBE).
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N\ \

oL
NN

N N

Figure: The Yang-Baxter relations o;0;110; = 0j110i041.




Quantum double or Drinfeld double

@ Drinfeld defined the quantum double of two braided Hopf
algebras as a way to construct solutions of the QYBE.
e For finite groups, the quantum double looks like the semidirect
product.
(g1h7)(g2h3) = 6(hE, h2)grgahs .
@ This generates a finite dimensional algebra denoted D(G), from
which one gets the R matrix (solution of YBE).
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@ The R matrix generates o; and thus the braid group. So for
any representation V' of the quantum group, we get a
representation of B, on V®".

@ The (non) denseness of this representation of B, in
U(dim(V)") depends on the quantum group. For D(G), it is
finite.



Dense invariants

@ About 12 years ago, in a series of papers, certain link invariants
were shown to be closely related to quantum computing.

@ Algorithms to additively approximate link invariants were found
(Freedman-Kitaev-Wang, Aharonov-Jones-Landau,
Wocjan-Yard).

@ Additive approximations of dense invariants such as the Jones
polynomial were shown to be BQP complete. Exactly
computing them was shown to #P complete.
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@ About 12 years ago, in a series of papers, certain link invariants
were shown to be closely related to quantum computing.

@ Algorithms to additively approximate link invariants were found
(Freedman-Kitaev-Wang, Aharonov-Jones-Landau,
Wocjan-Yard).

@ Additive approximations of dense invariants such as the Jones
polynomial were shown to be BQP complete. Exactly
computing them was shown to #P complete.

@ Kuperberg showed that one can obtain the complexity of
additive, multiplicative approximations and exact computations
using denseness.

@ Any quantum computation can be arbitrarily close to the plat
closure of a braid in the dense representation. So additive
approximations are BQP hard, multiplicative SBQP hard and
exact #P hard.

e Finally, density implies that any anyonic computer can be
simulated efficiently using the circuit model.



Additive and multiplicative approximations

For a function f(x), if the output g(x) of any probabilistic
algorithm can be mainly of two kinds.

o Additive approximation
Pr{[f(x) — g(x)| > eu(|x|)] < 1/4,

where u is a normalization.

o Multiplicative approximation

Pr[|f(x) — g(x)| > ef(x)] < 1/4.



Our results on D(G)

Algorithms:

e We develop the quantum Fourier transform over D(G) subject
to the condition that one can do QFTs over centralizer
subgroups. We show explicitly that this can be done for D(S,).

@ We use this to give efficient additive approximations of link
invariants coming from D(G).



Our results on D(G)

Algorithms:

e We develop the quantum Fourier transform over D(G) subject
to the condition that one can do QFTs over centralizer
subgroups. We show explicitly that this can be done for D(S,).

@ We use this to give efficient additive approximations of link
invariants coming from D(G).
Complexity

@ We show that for certain kinds of irreps (fluxons), the value of
the plat closure of a link can be made arbitrarily close to the
success probability of a randomized computation.

e This implies (like Kuperberg's result) that additive
approximations are BPP hard, multiplicative SBP hard and
exact computations are #P hard.

@ However, we needed to assume that the group G be of fixed
size.



Our results on D(G)

Simulation

@ In order to simulate a D(G) computer efficiently, one needs to
(in addition to the QFT) perform the Clebsch-Gordan
transform over D(G).

@ We show that this can be done for fluxon irreps.

@ We show that for general irreps, this can be done subject to
some conditions - such as CG over centralizers and another
transform over intersections of centralizers.

e We show that for D(Z, x Zg), this can be done for all irreps.
Here p and g are prime and q|(p — 1).

@ This quantum group has been shown to be universal for
quantum computing (Mochon).



Algorithms over D(G)

@ The irreducible representations of the quantum double are all
induced representations of the group G.

@ For any element g € G, the centralizer subgroup is the the set
Co(g) ={z € Glzg = gz}.

@ Suppose that p is an irrep of Cg(g), then the irreducible
representations of D(G) are of the type Tga(g) p.

@ If p is the trivial irrep, the Tgc(g) p is called a fluxon irrep.
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Co(g) = {z € Glzg = gz}.

@ Suppose that p is an irrep of Cg(g), then the irreducible
representations of D(G) are of the type Tga(g) p-

@ If p is the trivial irrep, the Tgc(g) p is called a fluxon irrep.

@ We reduce the problem of constructing the QFT over D(G) to
that of constructing a QFT over Cg(g) for each g.

@ Since C;(e) = G, this involves knowing the QFT over G as
well.

@ When G =S, we get Cs,(7) = Z 1 S¢,. For these groups, we
give an explicit transversal and QFT using Clifford theory.



Complexity

@ For this, we take the group size to be fixed and focus on fluxon
irreps.

o First, we take an arbitrary randomized computation and write
its probability of success as

Po= (0IRIG). 1) = =2 Irc).

where R is a reversible deterministic computation. r is the
random dit string of length m and c is a string of zeros.
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@ For this, we take the group size to be fixed and focus on fluxon
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o First, we take an arbitrary randomized computation and write
its probability of success as

= (@IRI). 10) = == Ire).

where R is a reversible deterministic computation. r is the
random dit string of length m and c is a string of zeros.

@ The plat closure has a similar expression
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Complexity

@ Using the Ogburn-Preskill encoding, the d levels are on two
anyons and are of the form |g, g~ 1).
@ So the probability of success is now

Ps = (®|R|D), dmZ](c c” gl,g1 8 YY)



Complexity

@ Using the Ogburn-Preskill encoding, the d levels are on two
anyons and are of the form |g, g~ 1).
@ So the probability of success is now

Ps = (®|R|D), dmZ](c c” gl,g1 8 YY)

@ To generate group constants ¢, we generate equations whose
solutions are the group constants.

xi = x{", where w is a word in the x;

Figure: Initial circles.



Complexity

Figure: A band between two circles.

Figure: A simple relation: x* =y.



Complexity
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Figure: The equation x¥ =y.

@ To kill unwanted solutions, we generate equations of the type
y = 0 such that w(d) = 1 and w(c) = a (Here c is the
wanted solution and d is unwanted).

@ We show that there are simple groups such as A,, which have
non-trivial a such that the equation y = x;" has multiple
solutions.



We need three capabilities in order to do universal quantum
computation.

Prepare any state in the Hilbert space of a pair of anyons
which correspond to conjugate irreps.

Perform braiding of anyons around each other and around
ancillas.

Fuse pairs of anyons and measure the flux and charge of the
resulting particle.

In order to simulate anyonic computation, we need to simulate
these on the circuit model.

In this part, we assume that the group size is asymptotically
growing again.



@ In order to simulate this using the circuit model, we only need
to focus on the last of the conditions.

@ The last one can be done if we can do the Clebsch-Gordan
transform over this group.

@ The CG transform is a unitary that breaks up a tensor product
of irreps into irreps.

@ We use a tensor product theorem and adapt it to our situation.

p 16 @0 t=PB(p Lhnke @ Lake) 1€
d

@ For fluxon irreps, we obtain a transform.

@ For dyons, we obtain a transform assuming one can do CG
transforms over centralizers etc.



Conclusions and open problems

@ The denseness (or the lack of it) seems to be related to the
complexity of approximating the link invariant.

@ Also related to the computational power of the anyonic system.

@ For dense invariants, the relationship is clearer, whereas little is
known for non-dense invariants.

@ Could lead to insights into what kind of gates sets lead to a
certain computational power.
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@ The denseness (or the lack of it) seems to be related to the
complexity of approximating the link invariant.

@ Also related to the computational power of the anyonic system.

@ For dense invariants, the relationship is clearer, whereas little is
known for non-dense invariants.

@ Could lead to insights into what kind of gates sets lead to a
certain computational power.

@ Extend the hardness result to asymptotically growing groups
(need new techniques).

@ Extend the Clebsch-Gordan transform to other groups.

@ These techniques could help with other problems as they
involve finite groups.



