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Main Question:

Does entanglement help in zero-error
communication between two parties with

• one-way classical noisy channel

• side information from a dual source
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The confusability graph of a channel

• The confusability graph of a noisy channel has as vertices the
channel’s inputs, which are adjacent if they are confusable
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• The Shannon capacity of H

c(H) = lim
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n
logα(H�n)

gives the maximum average number of bits that can be sent per
channel use

• The Shannon capacity lead to many interesting developments in
combinatorics: e.g., perfect graphs, semidefinite optimization
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The characteristic graph of a dual source

• The characteristic graph of a dual source has as vertices Alice’s
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• χ(G ) is the minimum size of the message set that Alice must use
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Entangled Shannon capacity

The entangled Shannon capacity c? of a graph H is defined as

c?(H) = lim
n→∞

1

n
logα?(H�n)

• [Cubitt et al. ’10] introduced α?, c? and showed that entanglement
can increase that number of possible messages that can be sent with
one use of the channel (i.e. α < α?)

• [Leung et al. ’12] and [Briët et al. ’12] showed that entanglement
can increase the capacity of a channel (i.e. c < c? by a constant
factor)



Lovász ϑ number

ϑ(G ) = min

such that

λ ∈ R

∃ PSD matrix Z ∈ RV×V

Z (u, u) = λ− 1 for all u ∈ V

Z (u, v) = −1 for all {u, v} 6∈ E

• Introduced by Lovász [’79] to compute c(C5)

• ϑ can be computed efficiently (up to any approximation)

• c(G ) ≤ log ϑ(G ) ≤ R(G ) ([Lovász ’79] and [Nayak et al. ’06])

• [Beigi ’10] and [Duan et al. ’13] proved c?(H) ≤ log ϑ(H)



ϑ bound on the entangled Witsenhausen rate

Theorem

log ϑ(G ) ≤ R?(G )

• Thus
c(G ) ≤ c?(G ) ≤ log ϑ(G ) ≤ R?(G ) ≤ R(G )



Separation between the classical and entangled
Witsenhausen rate

Theorem
There exists an infinite family of graphs Hk such that

R?(Hk)

R(Hk)
≤ O

( log k

k

)
.

• The orthogonality graph (a.k.a. Hadamard graph) has vertex set
{±1}k and two vertices are adjacent if and only if they are
orthogonal

• The quarter orthogonality graph Hk is a subgraph of the
orthogonality graph induced by the vertices x ∈ {±1}k with
x1 = +1 and an even number of −1’s
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Let k = 4p` − 1 where p is an odd prime and ` ∈ N, then
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• The lower bound on R(Hk) is derived from a technique that upper
bounds c(Hk). It is obtained using an instance of the linear algebra
method due to [Alon ’98] with a construction of certain low-degree
polynomials over finite field due to [Barrington et al. ’94]

• The upper bound on R?(Hk) relies on the construction of a
orthogonal representation of the graph Hk (similar idea as used by
[Cameron et al. ’07])
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Separation between the classical and entangled
Shannon capacity

Theorem
Let k = 4p` − 1 where p is an odd prime and ` ∈ N, then

c?(Hk)

c(Hk)
> 1.

• The upper bound on c(Hk) is obtained using an instance of the
linear algebra method due to [Alon ’98] (as before)

• The lower bound on c?(Hk) uses a new method based on the
teleportation scheme of [Bennet et al. ’93]
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• Send |V |t messages in t + 1 steps if logα(H) ≥ 2t log orthdim(H)
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entanglement, a generalization of the zero-error channel coding and
of the source coding with entanglement

• We present an infinite family of source and channels combinations
for which entanglement allows an exponential saving in
communication in zero-error source-channel coding
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Conclusions and open questions

• We introduced the zero-error source-channel coding problem with
entanglement

• We prove an efficiently computable lower bound on R? which implies
c?(G ) ≤ log ϑ(G ) ≤ R?(G )

• We prove that entanglement helps in the zero-error source, channel
and source-channel coding problem

Open Questions:

• Can we find a class of channels for which entanglement allows an
exponential increase in communication (i.e. c? � c)?

• What is the computational complexity of R?, χ?, c?, α??

• Does strict inequality hold in c?(G ) ≤ log ϑ(G ) ≤ R?(G )?

arXiv:1308.4283 Thank you!
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