Zero-error source-channel coding with entanglement

Barcelona, 5 February 2014

Main Question:

Does entanglement help in zero-error communication between two parties with

Main Question:

Does entanglement help in zero-error communication between two parties with

• one-way classical noisy channel

Main Question:

Does entanglement help in zero-error communication between two parties with

- one-way classical noisy channel
- side information from a dual source

• Goal: y = x with zero probability of error and maximize m

• The confusability graph of a noisy channel has as vertices the channel's inputs, which are adjacent if they are confusable

• The confusability graph of a noisy channel has as vertices the channel's inputs, which are adjacent if they are confusable

• The confusability graph of a noisy channel has as vertices the channel's inputs, which are adjacent if they are confusable

• An independent set is a set of pairwise non-adjacent vertices

• The confusability graph of a noisy channel has as vertices the channel's inputs, which are adjacent if they are confusable

- An independent set is a set of pairwise non-adjacent vertices
- The independence number α(H) of a graph H is the size of a largest possible independent set

• The confusability graph of a noisy channel has as vertices the channel's inputs, which are adjacent if they are confusable

- An independent set is a set of pairwise non-adjacent vertices
- The independence number α(H) of a graph H is the size of a largest possible independent set
- α(H) is the maximum number of distinct messages Alice can send to Bob

Block coding and the Shannon capacity

Encoding x into a sequence of channel inputs can be more efficient

Block coding and the Shannon capacity

- Encoding x into a sequence of channel inputs can be more efficient
- The Shannon capacity of H

$$c(H) = \lim_{n \to \infty} \frac{1}{n} \log \alpha(H^{\boxtimes n})$$

gives the maximum average number of bits that can be sent per channel use

Block coding and the Shannon capacity

- Encoding x into a sequence of channel inputs can be more efficient
- The Shannon capacity of H

$$c(H) = \lim_{n \to \infty} \frac{1}{n} \log \alpha(H^{\boxtimes n})$$

gives the maximum average number of bits that can be sent per channel use

• The Shannon capacity lead to many interesting developments in combinatorics: e.g., perfect graphs, semidefinite optimization

• Goal: y = x with zero probability of error and minimize n

• The characteristic graph of a dual source has as vertices Alice's inputs, which are adjacent if they are confusable to Bob

• The characteristic graph of a dual source has as vertices Alice's inputs, which are adjacent if they are confusable to Bob

• The characteristic graph of a dual source has as vertices Alice's inputs, which are adjacent if they are confusable to Bob

• A proper coloring assigns different colors to adjacent vertices

• The characteristic graph of a dual source has as vertices Alice's inputs, which are adjacent if they are confusable to Bob

- A proper coloring assigns different colors to adjacent vertices
- The chromatic number χ(G) of a graph G is the minimum number of colors needed for a proper coloring

• The characteristic graph of a dual source has as vertices Alice's inputs, which are adjacent if they are confusable to Bob

- A proper coloring assigns different colors to adjacent vertices
- The chromatic number χ(G) of a graph G is the minimum number of colors needed for a proper coloring
- $\chi(G)$ is the minimum size of the message set that Alice must use

Block coding and the Witsenhausen rate

Jointly coloring input sequences can be more efficient

Block coding and the Witsenhausen rate

- Jointly coloring input sequences can be more efficient
- The Witsenhausen rate of G

$$R(G) = \lim_{m \to \infty} \frac{1}{m} \log \chi(G^{\boxtimes m})$$

gives the minimum average number of bits needed per source input

• As for the classical case, the goal is to have **y** = **x** with zero probability of error and minimize n

- As for the classical case, the goal is to have **y** = **x** with zero probability of error and minimize n
- The entangled Witsenhausen rate R^{*} depends on the characteristic graph G and can be defined by simple constraints on σ, {A^s_x}

Entangled Shannon capacity

The entangled Shannon capacity c^* of a graph H is defined as

$$\boldsymbol{c}^{\star}(\boldsymbol{H}) = \lim_{n \to \infty} \frac{1}{n} \log \alpha^{\star}(\boldsymbol{H}^{\boxtimes n})$$

- [Cubitt et al. '10] introduced α^{*}, c^{*} and showed that entanglement can increase that number of possible messages that can be sent with one use of the channel (i.e. α < α^{*})
- [Leung et al. '12] and [Briët et al. '12] showed that entanglement can increase the capacity of a channel (i.e. $c < c^*$ by a constant factor)

Lovász ϑ number

$$artheta(G) = \min \qquad \lambda \in \mathbb{R}$$

such that $\exists PSD \text{ matrix } Z \in \mathbb{R}^{V imes V}$
 $Z(u, u) = \lambda - 1 \text{ for all } u \in V$
 $Z(u, v) = -1 \text{ for all } \{u, v\} \notin E$

- Introduced by Lovász ['79] to compute $c(C_5)$
- ϑ can be computed efficiently (up to any approximation)
- $c(G) \leq \log \vartheta(G) \leq R(\overline{G})$ ([Lovász '79] and [Nayak et al. '06])
- [Beigi '10] and [Duan et al. '13] proved $c^{\star}(H) \leq \log \vartheta(H)$

ϑ bound on the entangled Witsenhausen rate

Theorem

$$\log \vartheta(G) \leq R^{\star}(\overline{G})$$

• Thus

$$c(G) \leq c^{\star}(G) \leq \log \vartheta(G) \leq R^{\star}(\overline{G}) \leq R(\overline{G})$$

Theorem

There exists an infinite family of graphs H_k such that

$$\frac{R^{\star}(H_k)}{R(H_k)} \leq O\Big(\frac{\log k}{k}\Big).$$

Theorem

There exists an infinite family of graphs H_k such that

$$\frac{R^{\star}(H_k)}{R(H_k)} \leq O\Big(\frac{\log k}{k}\Big).$$

The orthogonality graph (a.k.a. Hadamard graph) has vertex set {±1}^k and two vertices are adjacent if and only if they are orthogonal

Theorem

There exists an infinite family of graphs H_k such that

$$\frac{R^{\star}(H_k)}{R(H_k)} \leq O\left(\frac{\log k}{k}\right).$$

- The orthogonality graph (a.k.a. Hadamard graph) has vertex set {±1}^k and two vertices are adjacent if and only if they are orthogonal
- The quarter orthogonality graph H_k is a subgraph of the orthogonality graph induced by the vertices x ∈ {±1}^k with x₁ = +1 and an even number of −1's

Theorem

Let $k = 4p^{\ell} - 1$ where p is an odd prime and $\ell \in \mathbb{N}$, then

$$\frac{R^{\star}(H_k)}{R(H_k)} \leq O\Big(\frac{\log k}{k}\Big).$$

Theorem

Let $k = 4p^{\ell} - 1$ where p is an odd prime and $\ell \in \mathbb{N}$, then

$$\frac{R^{\star}(H_k)}{R(H_k)} \leq O\Big(\frac{\log k}{k}\Big).$$

 The lower bound on R(H_k) is derived from a technique that upper bounds c(H_k). It is obtained using an instance of the linear algebra method due to [Alon '98] with a construction of certain low-degree polynomials over finite field due to [Barrington et al. '94]

Theorem

Let $k = 4p^{\ell} - 1$ where p is an odd prime and $\ell \in \mathbb{N}$, then

$$\frac{R^{\star}(H_k)}{R(H_k)} \leq O\Big(\frac{\log k}{k}\Big).$$

- The lower bound on R(H_k) is derived from a technique that upper bounds c(H_k). It is obtained using an instance of the linear algebra method due to [Alon '98] with a construction of certain low-degree polynomials over finite field due to [Barrington et al. '94]
- The upper bound on R*(H_k) relies on the construction of a orthogonal representation of the graph H_k (similar idea as used by [Cameron et al. '07])

Separation between the classical and entangled Shannon capacity

Theorem

Let $k = 4p^{\ell} - 1$ where p is an odd prime and $\ell \in \mathbb{N}$, then

$$\frac{c^{\star}(H_k)}{c(H_k)} > 1.$$

Separation between the classical and entangled Shannon capacity

Theorem

Let $k = 4p^{\ell} - 1$ where p is an odd prime and $\ell \in \mathbb{N}$, then

$$rac{oldsymbol{c}^{\star}(H_k)}{oldsymbol{c}(H_k)}>1.$$

• The upper bound on $c(H_k)$ is obtained using an instance of the linear algebra method due to [Alon '98] (as before)

Separation between the classical and entangled Shannon capacity

Theorem

Let $k = 4p^{\ell} - 1$ where p is an odd prime and $\ell \in \mathbb{N}$, then

$$rac{oldsymbol{c}^{\star}(H_k)}{oldsymbol{c}(H_k)}>1.$$

- The upper bound on $c(H_k)$ is obtained using an instance of the linear algebra method due to [Alon '98] (as before)
- The lower bound on $c^*(H_k)$ uses a new method based on the teleportation scheme of [Bennet et al. '93]

Lower bound on entangled Shannon capacity

• Main idea: Teleport a state of an orthonormal representation to Bob

Lower bound on entangled Shannon capacity

Main idea: Teleport a state of an orthonormal representation to Bob
Send |V|^t messages in t + 1 steps if log α(H) ≥ 2t log orthdim(H)

Further results

• We study the zero-error source-channel coding problem with entanglement, a generalization of the zero-error channel coding and of the source coding with entanglement

Further results

- We study the zero-error source-channel coding problem with entanglement, a generalization of the zero-error channel coding and of the source coding with entanglement
- We present an infinite family of source and channels combinations for which entanglement allows an exponential saving in communication in zero-error source-channel coding

• We introduced the zero-error source-channel coding problem with entanglement

- We introduced the zero-error source-channel coding problem with entanglement
- We prove an efficiently computable lower bound on R^* which implies $c^*(G) \leq \log \vartheta(G) \leq R^*(\overline{G})$

- We introduced the zero-error source-channel coding problem with entanglement
- We prove an efficiently computable lower bound on R^* which implies $c^*(G) \leq \log \vartheta(G) \leq R^*(\overline{G})$
- We prove that entanglement helps in the zero-error source, channel and source-channel coding problem

- We introduced the zero-error source-channel coding problem with entanglement
- We prove an efficiently computable lower bound on R^* which implies $c^*(G) \leq \log \vartheta(G) \leq R^*(\overline{G})$
- We prove that entanglement helps in the zero-error source, channel and source-channel coding problem

Open Questions:

• Can we find a class of channels for which entanglement allows an exponential increase in communication (i.e. $c^* \gg c$)?

- We introduced the zero-error source-channel coding problem with entanglement
- We prove an efficiently computable lower bound on R^* which implies $c^*(G) \leq \log \vartheta(G) \leq R^*(\overline{G})$
- We prove that entanglement helps in the zero-error source, channel and source-channel coding problem

Open Questions:

- Can we find a class of channels for which entanglement allows an exponential increase in communication (i.e. $c^* \gg c$)?
- What is the computational complexity of R^{*}, χ^{*}, c^{*}, α^{*}?

- We introduced the zero-error source-channel coding problem with entanglement
- We prove an efficiently computable lower bound on R^* which implies $c^*(G) \leq \log \vartheta(G) \leq R^*(\overline{G})$
- We prove that entanglement helps in the zero-error source, channel and source-channel coding problem

Open Questions:

- Can we find a class of channels for which entanglement allows an exponential increase in communication (i.e. $c^* \gg c$)?
- What is the computational complexity of R^{*}, χ^{*}, c^{*}, α^{*}?
- Does strict inequality hold in $c^*(G) \leq \log \vartheta(G) \leq R^*(\overline{G})$?

- We introduced the zero-error source-channel coding problem with entanglement
- We prove an efficiently computable lower bound on R^* which implies $c^*(G) \leq \log \vartheta(G) \leq R^*(\overline{G})$
- We prove that entanglement helps in the zero-error source, channel and source-channel coding problem

Open Questions:

- Can we find a class of channels for which entanglement allows an exponential increase in communication (i.e. $c^* \gg c$)?
- What is the computational complexity of R^{*}, χ^{*}, c^{*}, α^{*}?
- Does strict inequality hold in $c^{\star}(G) \leq \log \vartheta(G) \leq R^{\star}(\overline{G})$?

arXiv:1308.4283

Thank you!