
Complexity classification of local
Hamiltonian problems

Ashley Montanaro

Department of Computer Science, University of Bristol, UK

4 February 2014

arXiv:1311.3161

Joint work with Toby Cubitt:



Introduction

Constraint satisfaction problems are ubiquitous in computer
science.

Two classic examples:

The 3-SAT problem: given a boolean formula in
conjunctive normal form with at most 3 variables per
clause, is there a satisfying assignment to the formula?

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2)∧ (x4)

Solving 3-term linear equations: given a system of linear
equations over F2 with at most 3 variables per equation, is
there a solution to all the equations?

x1 + x2 + x4 = 0, x2 + x3 = 1, x1 + x4 = 0

The first of these is NP-complete, the second is in P.
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General constraint satisfaction problems

A very general way to study these kind of problems is via the
framework of the problem S-CSP.

Let S be a set of constraints, where a constraint is a
boolean function acting on a constant number of bits.

An instance of S-CSP on n bits is specified by a sequence
of constraints picked from S applied to subsets of the bits.

Our task is to determine whether there exists an
assignment to the variables such that all the constraints
are satisfied (evaluate to 1).

Theorem [Schaefer ’78]

S-CSP is either in P or NP-complete. Further, which of these is
the case can be determined easily for a given S.
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Local Hamiltonian problems
A natural quantum generalisation of CSPs is the
QMA-complete k-local Hamiltonian problem [Kitaev, Shen
and Vyalyi ’02].

k-local Hamiltonian

We are given a k-local Hamiltonian H =
∑m

i=1 H(i) on n qubits,
and two numbers a < b such that b − a > 1/poly(n). Promised
that the smallest eigenvalue of H is either at most a, or at least
b, our task is to determine which of these is the case.

Essentially equivalent to calculating the ground-state
energies of physical systems.

This connection to physics motivates the study of k-local

Hamiltonian with restricted types of interactions.

The aim: to prove QMA-hardness (or otherwise) of
problems of more direct physical interest.
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The S-Hamiltonian problem

Let S be a fixed subset of Hermitian matrices on at most k
qubits, for some constant k.

S-Hamiltonian

S-Hamiltonian is the special case of k-local Hamiltonian

where the overall Hamiltonian H is specified by a sum of
matrices H(i), each of which acts non-trivially on at most k
qubits, and whose non-trivial part is proportional to a matrix
picked from S.

We then have the following general question:

Problem
Given S, characterise the computational complexity of
S-Hamiltonian.
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Some examples

S = {ZZ}: the (general) Ising model (NP-complete):

H =
∑
i<j

αijZiZj.

S = {ZZ,X}: the (general) Ising model with transverse
magnetic fields (NP-hard, contained within StoqMA):

H =
∑
i<j

αijZiZj +
∑

k

βkXk.

Some QMA-complete cases:

S = {XX,ZZ,X,Z}, S = {XZ,X,Z} [Biamonte and Love ’08].

S = {XX + YY + ZZ,X,Y,Z} [Schuch and Verstraete ’09].
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Our main result

Let S be an arbitrary fixed subset of Hermitian matrices on at
most 2 qubits.

Theorem
1 If every matrix in S is 1-local, S-Hamiltonian is in P;

2 Otherwise, if there exists U ∈ SU(2) such that U locally
diagonalises S, then S-Hamiltonian is NP-complete;

3 Otherwise, if there exists U ∈ SU(2) such that, for each
2-qubit matrix Hi ∈ S, U⊗2Hi(U†)⊗2 = αiZ⊗2 + AiI + IBi,
where αi ∈ R and Ai, Bi are arbitrary 2× 2 Hermitian
matrices, then S-Hamiltonian is polytime-equivalent to
the Ising model with transverse fields;

4 Otherwise, S-Hamiltonian is QMA-complete.
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Notes and corollaries

The second case is stated in terms of “local diagonalisation”:

We say that U ∈ SU(2) locally diagonalises a 2k × 2k

matrix M if U⊗kM(U†)⊗k is diagonal.

We say that U locally diagonalises S if U locally
diagonalises M for all M ∈ S.
Note that matrices in S may be of different sizes.

As corollaries of our main result, we have that:

The (general) Heisenberg model is QMA-complete
(S = {XX + YY + ZZ})
The (general) XY model is QMA-complete (S = {XX+YY})

. . . as well as many other cases. We can think of this result as a
quantum analogue of Schaefer’s dichotomy theorem.
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Remarks on this result

We assume that, given a set of interactions S, we are
allowed to produce an overall Hamiltonian by applying
each interaction M ∈ S scaled by an arbitrary real weight,
which can be either positive or negative.

We assume that we are allowed to apply the interactions
in S across any choice of subsets of the qubits. That is, the
interaction pattern is not constrained by any spatial
locality, planarity or symmetry considerations.

Some of the interactions in S could be non-symmetric
under permutation of the qubits on which they act. We
assume that we are allowed to apply such interactions to
any permutation of the qubits.

We can assume without loss of generality that the identity
matrix I ∈ S (we can add an arbitrary “energy shift”).
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Proof techniques
The basic idea behind the proof of the QMA-hardness part is
to use reductions.

“To prove QMA-hardness of A-Hamiltonian,
approximately simulate some other set of interactions
B, where B-Hamiltonian is QMA-hard. ”

Given two Hamiltonians H and V, we form H̃ = V + ∆H,
where ∆ is a large parameter.
Then H̃<∆/2, the low-energy part of H̃, is effectively the
same as V−, the projection of V onto the lowest-energy
eigenspace of H.

Projection Lemma (informal, based on [Oliveira-Terhal ’08])

If ∆ = δ‖V‖2, then

‖H̃<∆/2 − V−‖ = O(1/δ).
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Example: the Heisenberg model

The case S = {XX + YY + ZZ} illustrates a difficulty with this
idea. Let

H =
∑
i<j

αij(XiXj + YiYj + ZiZj).

XX + YY + ZZ = 2F − I is invariant under conjugation by
U⊗2 for all U ∈ SU(2) (where F is the swap operator).

So the eigenspaces of H are all invariant under
conjugation by U⊗n!

This means that we cannot hope to implement an arbitrary
Hamiltonian using only this interaction.

Just as with classical CSPs, the way round this is to use
encodings.
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Example: the Heisenberg model

We would like to find a gadget that encodes qubits, and
lets us encode operations across qubits.

We try to encode a logical qubit within a triangle of 3
physical qubits:

This is inspired by previous work on universality of the
exchange interaction [Kempe et al. ’00].
We can find a 4-dimensional subspace of the 3 qubits such
that, within this subspace, we can make logical Z⊗ I and
X ⊗ I operators.
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Example: the Heisenberg model
We would now like to make pairwise interactions across
logical qubits.

This can almost be done by applying Heisenberg
interactions across different choices of physical qubits.
Let the logical qubits in the first (resp. second) triangle be
labelled (1,2) (resp. (3,4)).
By applying suitable linear combinations across qubits,
we can effectively make

X1X3(2F − I)24, Z1Z3(2F − I)24, I1I3(2F − I)24.
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Example: the Heisenberg model
So, using Heisenberg interactions alone, we can implement an
arbitrary (logical) Hamiltonian of the form

H =

n∑
k=1

(αkXk + βkZk)Ik ′ +
∑
i<j

(γijXiXj + δijZiZj)(2F − I)i ′j ′ ,

where we identify the i’th logical qubit pair with indices (i, i ′).

We would like to remove the (2F − I) operators.
To do this, we force the primed qubits to be in some state
by very strong Fi ′j ′ interactions: we add the (logical) term

G = ∆
∑
i<j

wijFi ′j ′

where wij are some weights and ∆ is very large.
We can do this by making IiIj(2F − I)i ′j ′ as on last slide.
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G = ∆
∑
i<j

wijFi ′j ′

where wij are some weights and ∆ is very large.
We can do this by making IiIj(2F − I)i ′j ′ as on last slide.



Example: the Heisenberg model

If the ground state |ψ〉 of G is non-degenerate, the primed
qubits will all be effectively projected onto the ground state,
and H will become (up to a small additive error)

H̃ =

n∑
k=1

αkXk + βkZk +
∑
i<j

(γijXiXj + δijZiZj)〈ψ|(2F − I)i ′j ′ |ψ〉.

So we need to find a G such that the ground state is
non-degenerate and 〈ψ|(2F − I)i ′j ′ |ψ〉 6= 0 for all i, j (and
also these quantities should be easily computable).

Not so easy! This corresponds to an exactly solvable
special case of the Heisenberg model, and not many of
these are known.

Luckily for us, the Lieb-Mattis model [Lieb and Mattis ’62]
has precisely the properties we need.
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The normal form
We’ve dealt with the Heisenberg model. . . what about
everything else?

We can simplify things using a very similar
normal form to one identified by [Dür et al. ’01, Bennett et al. ’02]:

Lemma
Let H be a 2-qubit interaction which is symmetric under
swapping qubits. Then there exists U ∈ SU(2) such that the
2-local part of U⊗2H(U†)⊗2 is of the form

αXX + βYY + γZZ.

Why is this useful? If we conjugate each term by U⊗2 in a
2-local Hamiltonian with only H interactions, it doesn’t change
the eigenvalues:

∑
i6=j

αij(U⊗2H(U†)⊗2)ij = U⊗n

∑
i 6=j

αijHij

 (U†)⊗n.
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The other QMA-complete cases

This normal form drastically reduces the number of
interactions we have to consider to a few special cases:

The XY model S = {XX + YY} uses similar techniques to
the Heisenberg model, but the gadgets are a bit simpler.
For S = {XX + αYY + βZZ}, we can reduce from the XY
model.
We also need to deal with the antisymmetric case
S = {XZ − ZX}.
For interactions with 1-local terms, using gadgets we can
effectively delete the 1-local parts.

Finding and verifying each of the gadgets required was
somewhat painful and required the use of a computer algebra
package.
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Conclusions and open problems

We have (almost) completely characterised the complexity of
2-local qubit Hamiltonians.

Despite this, our work is only just beginning. . .

What about k-qubit interactions for k > 2? We also have a
complete characterisation here in the special case where
we assume that we are allowed access to arbitrary local
terms (i.e. {X,Y,Z} ⊆ S).

What about local dimension d > 2? Classically, the
complexity of d-ary CSPs is still unresolved.
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More open problems

What about restrictions on the interaction pattern or
weights? e.g. 1-dimensional systems, 2-D lattices, the
antiferromagnetic Heisenberg model etc.

See very recent independent work (previous talk!)
proving QMA-hardness for S = {XX + YY,Z} when
weights of XX + YY terms are positive and weights of Z
terms are negative [Childs, Gosset and Webb ’13]. . .

What about quantum k-SAT?

Finally, what is the complexity of the transverse Ising
model? Our intuition: at least MA-hard. . . for now, we
encapsulate it as a new complexity class TIM.
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Thanks!

arXiv:1311.3161



Allowing local terms

One variant of this framework is to allow arbitrary local terms
(“magnetic fields”).

S-Hamiltonian with local terms

S-Hamiltonian with local terms is the special case of
S-Hamiltonian where S is assumed to contain X, Y, Z.

This is equivalent to S containing all 1-local interactions.

For any S, S-Hamiltonian with local terms is at least
as hard as S-Hamiltonian.

It is known that S-Hamiltonian with local terms is
QMA-complete when:

S = {XX + YY + ZZ} [Schuch and Verstraete ’09]

S = {XX,ZZ} or S = {XZ} [Biamonte and Love ’08]



Allowing local terms

One variant of this framework is to allow arbitrary local terms
(“magnetic fields”).

S-Hamiltonian with local terms

S-Hamiltonian with local terms is the special case of
S-Hamiltonian where S is assumed to contain X, Y, Z.

This is equivalent to S containing all 1-local interactions.
For any S, S-Hamiltonian with local terms is at least
as hard as S-Hamiltonian.

It is known that S-Hamiltonian with local terms is
QMA-complete when:

S = {XX + YY + ZZ} [Schuch and Verstraete ’09]

S = {XX,ZZ} or S = {XZ} [Biamonte and Love ’08]



Allowing local terms

One variant of this framework is to allow arbitrary local terms
(“magnetic fields”).

S-Hamiltonian with local terms

S-Hamiltonian with local terms is the special case of
S-Hamiltonian where S is assumed to contain X, Y, Z.

This is equivalent to S containing all 1-local interactions.
For any S, S-Hamiltonian with local terms is at least
as hard as S-Hamiltonian.

It is known that S-Hamiltonian with local terms is
QMA-complete when:

S = {XX + YY + ZZ} [Schuch and Verstraete ’09]

S = {XX,ZZ} or S = {XZ} [Biamonte and Love ’08]



The case with local terms

Let S be a fixed subset of Hermitian matrices on at most k
qubits, for some constant k.

Theorem
Let S ′ be the subset formed by removing all 1-local terms from
each element of S, and then deleting all 0-local matrices. Then:

1 If S ′ is empty, S-Hamiltonian with local terms is in P;

2 Otherwise, if there exists U ∈ SU(2) such that U locally
diagonalises S ′, then S-Hamiltonian with local terms

is poly-time equivalent to the transverse Ising model;
3 Otherwise, S-Hamiltonian with local terms is

QMA-complete.
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The idea
The basic idea:

“To prove QMA-hardness of A-Hamiltonian,
approximately simulate some other set of interactions
B, where B-Hamiltonian is QMA-hard. ”

To do this, we use two kinds of reductions, both based on
perturbation theory.

The first-order perturbative gadgets we use are based on
ideas going back to [Oliveira and Terhal ’08] and [Schuch and
Verstraete ’08].

The basic idea: to implement an effective interaction
across two qubits a and c, add a new mediator qubit b
interacting with each of a and c, and put a strong 1-local
interaction on b.
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Example

Claim (similar to results of [Schuch and Verstraete ’08])
For any γ 6= 0, {XX + γZZ}-Hamiltonian with local terms

is QMA-complete.

We use the following perturbative gadget, taking ∆ to be a
large coefficient:

a b

∆|1〉〈1|
c

XX + γZZ XX + γZZ

This forces qubit b to (approximately) be in the state |0〉.

It turns out that, up to local and lower-order terms, the
effective interaction across the remaining qubits is

Heff ∝ XaXc.
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Example

So, given access to terms of the form XX + γZZ, we can
effectively make XX terms. By subtracting from
XX + γZZ, we can also make ZZ terms.

The claim follows from the result of [Biamonte and Love ’08]
that {XX,ZZ}-Hamiltonian with local terms is
QMA-complete.

We can similarly show that:

For any β,γ 6= 0, {XX + βYY + γZZ}-Hamiltonian with

local terms is QMA-complete.
{XZ − ZX}-Hamiltonian with local terms is
QMA-complete.

This turns out to be all the cases we need to complete the
characterisation of S-Hamiltonian with local terms!
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The different cases in the characterisation

To finish off the 2-local special case of S-Hamiltonian with

local terms:

If the 2-local part of any interaction in S is locally
equivalent to XX + βYY + γZZ or XZ − ZX, we have
QMA-completeness;

If the 2-local part of all the interactions is locally
equivalent to ZZ, using local rotations we can show
equivalence to the transverse Ising model;

If neither of these is true, we must have one interaction
equivalent to XX, another to AA for some A 6= X
(exercise!).

So we can make XX + AA, which suffices for
QMA-completeness.
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The k-local case for k > 2
We can generalise to S-Hamiltonian with local terms

when S contains k-qubit interactions, for any constant k > 2.

Basic idea: using local terms, produce effective (k − 1)-
qubit interactions from k-qubit interactions, via the gadget

a
∆|ψ〉〈ψ|

{a}c
I ⊗ A + X ⊗ B + Y⊗ C + Z⊗D

By letting |ψ〉 be the eigenvector of X, Y or Z with
eigenvalue ±1, we can produce the effective interactions
A± B, A± C and A±D (up to a small additive error).

By adding/subtracting these matrices we can make each
of {A,B,C,D}.

So either S is QMA-complete, or all 2-local “parts” of each
interaction in S are simultaneously diagonalisable by local
unitaries. This case turns out to be in TIM.
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S-Hamiltonian: The list of lemmas

It suffices to prove QMA-completeness of the following cases:

1 {XX + YY + ZZ}-Hamiltonian;

2 {XX + YY}-Hamiltonian;

3 {XZ − ZX}-Hamiltonian;

4 {XX + βYY + γZZ}-Hamiltonian;

5 {XX + βYY + γZZ + AI + IA}-Hamiltonian;

6 {XZ − ZX + AI − IA}-Hamiltonian.

In the above, β, γ are real numbers such that at least one of β
and γ is non-zero, and A is an arbitrary single-qubit Hermitian
matrix.



S-Hamiltonian: The list of lemmas

We also need some reductions from cases which are not
necessarily QMA-complete:

{ZZ,X,Z}-Hamiltonian reduces to
{ZZ + AI + IA}-Hamiltonian;
{ZZ,X,Z}-Hamiltonian reduces to
{ZZ,AI − IA}-Hamiltonian.

In the above, A is any single-qubit Hermitian matrix which
does not commute with Z.

And the very final case to consider:

Let S be a set of diagonal Hermitian matrices on at most 2
qubits. Then, if every matrix in S is 1-local,
S-Hamiltonian is in P. Otherwise, S-Hamiltonian is
NP-complete.



Example gadget for cases with 1-local terms
Let H := XX + βYY + γZZ + AI + IA, where β or γ is non-zero.

Lemma
{H}-Hamiltonian is QMA-complete.

The gadget used looks like:

a b

c d e

∆H

−∆H −∆H
∆H H

The ground state of G := Hab + Hcd − Hac − Hbd is
maximally entangled across the split (a-c : d).
So if we project Hde onto this state, the effective interaction
produced is A on qubit e.
This allows us to effectively delete the 1-local part of H.



The Lieb-Mattis model
The Lieb-Mattis model describes Hamiltonians of the form

HLM =
∑

i∈A,j∈B

XiXj + YiYj + ZiZj,

where A and B are disjoint subsets of qubits.

Claim [Lieb and Mattis ’62, . . . ]

If |A| = |B| = n, the ground state |φ〉 of HLM is unique. For i
and j such that i, j ∈ A or i, j ∈ B, 〈φ|Fij|φ〉 = 1. Otherwise,
〈φ|Fij|φ〉 = −2/n.

Using this claim, we can effectively implement any
Hamiltonian of the form

H̃ =

n∑
k=1

αkXk + βkZk +
∑
i<j

γijXiXj + δijZiZj,

which suffices for QMA-completeness [Biamonte and Love ’08].
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