The 2nd laws of Quantum Thermodynamics

Jonathan Oppenheim (UCL) QIP 2014

1305.5278 Brandao, Horodecki, Ng, J.O., Wehner

1111.3834 Horodecki, JO; (Nature Comms)

1111.3882 Brandao, Horodecki, JO, Renes, Spekkens (PRL)

0212019 Horodecki², JO (PRA)

T

Outline

- 2nd law: allowable state transitions $(\rho, H) \rightarrow (\sigma, H')$
- Many 2nd laws: $F \longrightarrow F_{\alpha}$
- Many families of 2nd laws depending on "how cyclic" the process is
- 0th, 1st law: class of operations
- Tools from QI:
 - resource theories
 - catalytic majorization
 - quantum Renyi-divergences
 - entanglement embezzling

Fig. 59. — Machine à bolancier de Watt. e. Tuyau de prise de vapeur : T. tiroir : J. cylindra : H. condenseur : PE pampe d'épuisement : WY pompe alimentaire de la chaudière UX pompe d'alimentation de la bâche B: p Z régulateur ; dé excentrique : ABGD parallélogramme : GN bielle et manivelle : V volant.

1st wave (phenomenology) Carnot (1824) Joule (1843) Kelvin (1849) Clausius (1854)

2nd wave (stat mech) Maxwell (1871) Boltzman (1875) Gibbs (1876)

Quantum Thermodynamics

- Gibbs state with full information
 - Gemmer, Michel, Mahler (2005), Popescu, Short, Winter (2006)
- Meaning of Negative Entropy, conditional erasure
 - Del Rio et al. (2011), Faist et al. (2013)
- Smallest possible fridges
 - Linden, Popescu, Skrzypczyk (2010)
- Deterministic work extraction
 - HHO (2003), Dahlston et al. (2010), HO (2011), Aaberg (2011), Egloff et al. (2012)
- Average work extraction
 - Brandao et. al. (2011), Skrzypczyk et. al. (2013)
- Non-ideal heat baths, correlations, entanglement
 - Reeb, Wolf (2013); Gallego et. al. (2013), Hovhannisyan et. al. (2013)
- Thermalisation times
- Micro engines & machines
 - Scovil & Schultz-Dubois (1959), Howard (1997)
 - Rousselet et al. (1994), Faucheux et al. (1995), Scully (2002)
- Prehistory
 - Ruch and Mead (75), Janzig et. al. (2000)

Thermodynamics of quantum systems

- No thermodynamic limit!
- Coherences in energy basis
- More precise control?
- Rigorous theory?

3 laws of classical thermodynamics

0) If R_1 is in equilibrium with R_2 and R_3 then R_2 is in equilibrium with R_3

I) dE = dQ - dW (energy conservation)

2) Heat can never pass from a colder body to a warmer body without some other change occurring. – Clausius

3) One can never attain $S(\rho) = C$ in a finite number of steps

1) dE = dQ - dW (energy conservation)

Joule (1843)

Not a consequence, but part of the class of operations

The second law

Heat can never pass from a colder body to a warmer body without some other change occurring. – Clausius

The second law

Heat can never pass from a colder body to a warmer body without some other change occurring. – Clausius

The second law

Heat can never pass from a colder body to a warmer body without some other change occurring. – Clausius

The second law (+ first law)

In any cyclic process, the free energy of a system can only decrease.

Free Energy

F = E - TS

 $W_{\text{gain}} = F(\rho_{\text{initial}}) - F(\rho_{\text{final}})$ $\rho_{\text{initial}} \rightarrow \rho_{\text{final}} \text{ only if } \Delta F \ge 0$ Catalytic Thermal Operations ∧_τ

- (ρ_s, H_s)
 - $\rho_s = resource$
 - H_s = Hamiltonian
- adding arbitrary many copies of state $\tau_{\rm R}$
- borrowing ancillas (working body) and returning them in the "same" state $\sigma_{\!c}$
- energy conserving unitaries U(1st law) $[U, H_s + H_R + H_c] = 0$
- tracing out (trash)

Thermal Operations

or in the micro - regime

1 law of quantum thermodynamics

Class of operations:

0) The only free state τ which doesn't enable arbitrary transitions is the thermal state $\tau = e^{-\beta H_R}/Z$

1) Energy conserving unitaires

Thermo-monotones:

2)* The state ρ_s must get closer to τ_s in terms of free energy type distances $F_a(\rho_s \parallel \tau_s) \quad \forall a \leq 0$

Zeroeth Law

After decohering in the energy eigenbasis, one can extract work from many copies of any state which is not passive $(p_i \leq p_j \text{ iff } E_i \geq E_j)$

[just swap levels i and j, while raising the weight, and repeat over many blocks]

Many copies of any state except the thermal state results in a state which is not passive after decohering (Pusz and Woronowicz (78), Brandao et. al. 2011).

This gives us an equivalence class, of allowed free states (τ_{β}, H_R) labelled by β . Any other free state allows arbitrary transitions.

The second laws (psuedo-classical)

Thermal F_a($\rho || \tau$) = $\frac{kT}{1-a} \log tr \rho^a \tau^{1-a} - kT \log Z$ $a \ge 0$ monotones: F₁($\rho || \tau$) = F(ρ)

- Ordinary 2nd law is one of many
- In macroscopic limit, weak interactions, all $F_a \simeq F$
- For ρ block diagonal, 2nd law is necessary and sufficient

Quantum Second Laws

$$\hat{F}_{a}(\rho||\tau) := \frac{kT}{a-1} \log \left(tr \left(\tau^{\frac{1-a}{2a}} \rho \ \tau^{\frac{1-a}{2a}} \right)^{a} \right) - kT \log Z$$

Müller–Lennert et al. Wilde et al. Jaksic et al. (2013)

or

$$\tilde{F}_{a}(\rho||\tau) := kT \frac{\operatorname{sgn}(a)}{a-1} \log tr \rho^{a} \tau^{1-a} - kT \log Z \qquad \text{Petz (86)}$$

 F_a monotonic under CPT maps for $\alpha \in [0, 1]$

 \hat{F}_{a} monotonic for $\alpha \geq \frac{1}{2}$ Frank and Lieb (2013)

$$\tilde{F}(\boldsymbol{\rho}||\boldsymbol{\tau}) \geq \tilde{F}(\wedge_{\boldsymbol{\tau}}(\boldsymbol{\rho})||\wedge_{\boldsymbol{\tau}}(\boldsymbol{\tau})) = \tilde{F}(\boldsymbol{\rho}'||\boldsymbol{\tau})$$

Quantum Second Laws

$$\rho \longrightarrow \rho'$$
 only if

$$\hat{F}_{\alpha}(\boldsymbol{\rho}||\boldsymbol{\tau}) \geq \hat{F}(\boldsymbol{\rho}'||\boldsymbol{\tau}) \qquad \alpha \geq \frac{1}{2}$$

 $\hat{F}_{a}(\tau||\rho) \geq \hat{F}_{a}(\tau||\rho) \qquad \frac{1}{2} \leq \alpha \leq 1$

 $\hat{F}_{a}(\boldsymbol{
ho}||\boldsymbol{\tau}) \geq \hat{F}_{a}(\boldsymbol{
ho}'||\boldsymbol{\tau})$

 $\mathbf{0} \leq \alpha \leq \mathbf{2}$

Quasi-classical 2nd laws

For degenerate energy levels

 $P(E_1,g_1)e^{\beta E_1} \ge P(E_2,g_2)e^{\beta E_2} \ge \dots \beta$ - ordered conjecture of Ruch & Mead (75)

Thermo-majorization

Majorization within energy blocks

 $\tau_R \otimes \rho_S$ Thermo-majorization

 $E = E_R + E_S \text{ fixed i.e. } P_E \tau_R \otimes \rho_S P_E$ For each E_S , $g_R(E_R) = g_R(E - E_S) = e^{-\beta E_S} g_R(E)$ eigen values of $P_E \tau_R \otimes \rho_S P_E$ are $\frac{e^{\beta E_S}}{g_R(E)} P(E,g)$ with multiplicity $g_R(E)e^{-\beta E_S}$

Catalytic transformations Working body, clock, etc. $x \rightarrow y \quad \ni \quad z \text{ s.t. } x \otimes z > y \otimes z$

"trumping" e.g. Klimesh - Turgut

$$x = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0\right)$$
 $y = \left(\frac{4}{10}, \frac{4}{10}, \frac{1}{10}, \frac{1}{10}\right)$ $z = \left(\frac{6}{10}, \frac{4}{10}\right)$

 $X \neq Y \qquad X \otimes Z > Y \otimes Z$

 $D_{\alpha}(x \parallel \eta) \geq D_{\alpha}(y \parallel \eta) \qquad \forall \ \alpha \in (-\infty, \infty)$

$$\eta = \left(\frac{1}{k}, \dots, \frac{1}{k}\right)$$

How cyclic?

 $\sigma_{in} \otimes \rho_{S} \rightarrow \sigma_{out} \otimes \rho_{s}$ $|| \sigma_{in} - \sigma_{out} ||, \le \epsilon$

Embezzlement

$$\sigma_{\text{in}} = \sum_{i} \frac{1}{i} |i\rangle \langle i| \qquad \text{c.f. van Dam, Hayden (2002)}$$
$$||\sigma_{\text{out}} - \sigma_{\text{in}}||_{, \leq \epsilon} \qquad \sigma_{\text{in}} \otimes \frac{\mathbb{I}}{2} \longrightarrow \sigma_{\text{out}} \otimes |0\rangle \langle 0|$$

2nd laws

1) All transformations are possible

 $||\sigma_{in} - \sigma_{out}||, \le \epsilon$

2) Ordinary 2nd law: $F_1(\rho \parallel \tau)$ goes down

 $||\sigma_{in} - \sigma_{out}||, \le \epsilon/\log d_{catalyst}$

3) $F_{\alpha}(\rho \parallel \tau)$ must go down $\alpha \ge 0$

Small work distance

$$D_{work}\left(\sigma^{\mathsf{in}} > \sigma^{\mathsf{out}}\right) := \mathsf{kT}\inf_{a>0}\left[F_a(\sigma_{\mathsf{in}}||\tau) - F_a(\sigma_{\mathsf{out}}||\tau)\right]$$

Resource Theories

	Theory	Entanglement	Purity	Asymmetry
	Class of Operations	LOCC	Noisy <u>⊥</u> ,u d	$T(g)$ 0 ε 0 $T^{t}(g) = \varepsilon$
	Free States	Seperable σ	I / <i>d</i>	$\boldsymbol{\sigma} = \mathbf{T}(\mathbf{g})\boldsymbol{\sigma} \ \mathbf{T}^{\mathbf{t}}\left(\mathbf{g}\right)$
	Monotones	$\inf_{\sigma} \mathbf{R}(\rho \sigma)$	$\mathbf{R}(ho rac{\mathbb{I}}{\mathbf{d}}) = \mathbf{N} - \mathbf{S}(ho)$	$\inf_{\sigma} \textit{\textbf{R}}(\rho \sigma)$
Horodecki, JO (2002, 2012) "Quantumness" Thermodynamics				

Conclusions

Laws of thermodynamics _____1st law

- Thermal Operations (U_E , τ , tr)

 O^{th} : τ must be thermal for non-trivial theory

- $2^{nd *}$: $F_{\alpha}(\rho \parallel \tau)$ must go down
- * : embezzlement, how cyclic $\forall a \leq 0$

Doesn't depend on how much control one has!

quasi-classical states: 2nd laws are necessary and sufficient

Limitations due to finite size, quantumness