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Outline
• 2nd law: allowable state transitions!

• Many 2nd laws: F        Fα"

• Many families of 2nd laws depending on 
“how cyclic” the process is!

• 0th, 1st law: class of operations!

• Tools from QI: !
• resource theories 	


• catalytic majorization 	


• quantum Renyi-divergences	


• entanglement embezzling
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1st wave!
(phenomenology)!
Carnot (1824)!
Joule (1843)!
Kelvin (1849)!
Clausius (1854)!

2nd wave!
(stat mech)!
Maxwell (1871)!
Boltzman (1875)!
Gibbs (1876)!
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Quantum Thermodynamics!
• Gibbs state with full information!

• Gemmer, Michel, Mahler (2005), Popescu, Short, Winter (2006)!
• Meaning of Negative Entropy, conditional erasure!

• Del Rio et al. (2011), Faist et al. (2013)!
• Smallest possible fridges!

• Linden, Popescu, Skrzypczyk (2010)!
• Deterministic work extraction     !

• HHO (2003), Dahlston et al. (2010), HO (2011), Aaberg (2011), Egloff et al. (2012)!
• Average work extraction!

• Brandao et. al. (2011), Skrzypczyk et. al. (2013)!
• Non-ideal heat baths, correlations, entanglement!

• Reeb, Wolf (2013); Gallego et. al. (2013), Hovhannisyan et. al. (2013)!
• Thermalisation times!
• Micro engines & machines!

• Scovil & Schultz-Dubois (1959), Howard (1997)!
• Rousselet et al. (1994), Faucheux et al. (1995), Scully (2002)!

• Prehistory!
• Ruch and Mead (75), Janzig et. al. (2000)
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!

• No thermodynamic limit!	


• Coherences in energy basis	


• More precise control?	


• Rigorous theory?	


!
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Thermodynamics of 
quantum systems



3 laws of classical 
thermodynamics!

0) If R1 is in equilibrium with R2 and R3 then R2 is 
in equilibrium with R3	


1) dE = dQ – dW     (energy conservation)	


2) Heat can never pass from a colder body to a 
warmer body without some other change  
occurring. – Clausius	


3) One can never attain S(ρ) = C in a finite 
number of steps

�6



1) dE = dQ – dW     (energy conservation)

Joule (1843)

Not a consequence, but part of the class of operations!
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The second law

Heat can never pass from a colder body to a warmer body 
without some other change occurring. – Clausius
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The second law

Heat can never pass from a colder body to a warmer body 
without some other change occurring. – Clausius
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The second law

Heat can never pass from a colder body to a warmer body 
without some other change occurring. – Clausius
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The second law 
(+ first law) 

In any cyclic process, the free energy of a system can 
only decrease.
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Free Energy

F = E – TS!

W gain = F(ρ initial) – F(ρ final )!

ρ initial → ρ final   only if    ΔF ≥ 0
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Catalytic Thermal 
Operations ∧τ

• (ρ s, Hs)  !

• ρ s = resource!

• Hs = Hamiltonian!

• adding arbitrary many copies of state τR!

• borrowing ancillas (working body) and returning them 
in the “same” state σc!

• energy conserving unitaries U  
(1st law)     [U, Hs + HR + Hc] = 0!

• tracing out     (trash)
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Thermal Operations

or in the micro - regime
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1 law of quantum 
thermodynamics

Class of operations:!

0) The only free state τ which doesn’t enable arbitrary 
transitions is the thermal state !

1) Energy conserving unitaires!

Thermo-monotones:!

2)* The state ρs must get closer to τs in terms of free       
energy type distances  Fα(ρs || τs)    !
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Zeroeth Law
After decohering in the energy eigenbasis, one can extract 
work from many copies of any state which is not passive         
(             iff               )	


[just swap levels i and j, while raising the weight, and repeat over 
many blocks]  	


Many copies of any state except the thermal state results in a 
state which is not passive after decohering (Pusz and 
Woronowicz (78), Brandao et. al. 2011).	


This gives us an equivalence class, of allowed free states             
labelled by    .  Any other free state allows arbitrary transitions.	
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The second laws !
(psuedo-classical)

!
Thermal  
monotones:!
!
• Ordinary 2nd law is one of many!
• In macroscopic limit, weak interactions, all !
• For ρ block diagonal, 2nd law is necessary and sufficient
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Quantum Second Laws
Müller−Lennert et al.   
Wilde et al. 
Jaksic et al. (2013)
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or

Petz (86)

monotonic under CPT maps for         [0, 1]   � �

monotonic for           ↵ � 1
2 Frank and Lieb (2013)
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Quantum Second Laws
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Quasi-classical 2nd laws
For degenerate energy levels
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iff x > y Horodecki, JO (2003)x y
N.O.

- ordered conjecture of Ruch & Mead (75)( , ) � � ( , ) � � . . . �
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ΔF
wform

wdist

Strengthens Dahlston et al. for H = 0

c.f. Ahlberg (2011)
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Thermo-majorization
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Majorization within energy blocks!
!
τR ⊗ ρS   Thermo-majorization!
!
E = ER + ES   fixed   i.e.   PE τR ⊗ ρS PE  !

!
For each !
!
eigen values of   PE τR ⊗ ρS PE   are    !
!
with multiplicity
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Catalytic transformations
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Working body, clock, etc.!
!
!

“trumping” e.g. Klimesh - Turgut!
!

x ≯ y! ! x ⊗ z  > y ⊗ z!

Dα(x || η)  ≥ Dα(y || η)         ∀ α 

x y
C.N.O. ∍ z  s.t. x ⊗ z  > y ⊗ z
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How cyclic?
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σin ⊗ ρS → σout ⊗  ρs                       || σ in − σout ||, ≤ ϵ!

Embezzlement!

!

σ in ! ! ! ! ! ! ! c.f. van Dam, Hayden (2002)!

||σout − σ in ||, ≤ ϵ           σ in ⊗! ! ! ! σout ⊗ |0 > < 0|!
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2nd laws

1) All transformations are possible!

! ||σ in − σout ||, ≤ ϵ!

2) Ordinary 2nd law: F1(ρ || τ) goes down!

! ||σ in − σout ||, ≤ ϵ/log dcatalyst!

3)  Fα(ρ || τ) must go down    α    0!

    Small work distance    
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Resource Theories
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“Quantumness”           Thermodynamics!
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Horodecki, JO (2002, 2012)



Conclusions
Laws of thermodynamics! ! ! !      1st law!
! –  Thermal Operations (UE, τ, tr)!
0th : τ must be thermal for non-trivial theory!
2nd * : Fα (ρ || τ) must go down !
* : embezzlement, how cyclic!
! Doesn’t depend on how much control one has!!
quasi-classical states: 2nd laws are necessary and sufficient!
Many free energies ! !        irreversibility  !
Limitations due to finite size, quantumness!
!
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