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The properties and relations of various existing entanglement measures are very important for
our understanding of quantum entanglement. Despite considerable achievements, a lot of issues still
remain unclear, even in the bipartite case [1]. Here, we are interested in two families of entanglement
measures: Squashed entanglement [2–4]

𝐸𝑠𝑞(𝜌𝐴𝐵) := inf

{
1

2
𝐼(𝐴;𝐵∣𝐸)𝜌 : 𝜌𝐴𝐵𝐸 is an extension of 𝜌𝐴𝐵

}
,

and the relative entropy of entanglement 𝐸𝑟(𝜌𝐴𝐵) := min
𝜎𝐴𝐵∈SEP

𝐷(𝜌∥𝜎) [5, 6], as well as their analogues

and variants.
For each positive operator-valued measurement (POVM) {𝑀𝑖}𝑖, it can be alternatively identi-

fied with a measurement operation ℳ, which is a completely positive map from density matrices
to probability vectors, ℳ(𝜔) =

∑
𝑖 ∣𝑖⟩⟨𝑖∣Tr(𝜔𝑀𝑖). On composite system 𝐴𝐵, we define some re-

stricted classes of measurements LO, 1-LOCC, LOCC, SEP and PPT. LO, 1-LOCC and LOCC are the
sets of measurements that can be implemented by means of local operations, local operations and
one-way classical communication, local operations and arbitrary two-way classical communication,
respectively; SEP and PPT are the classes of measurements whose POVM elements are separable or
positive-partial-transpose, respectively.

We also introduce the variants of relative entropy of entanglement, which will be involved inten-
sively later. Piani defined the relative entropy of entanglement with respect to the set of states G and
the restricted class of measurements M [7], as

𝐸
(G)
𝑟,M(𝜌) := inf

𝜎∈G
sup
ℳ∈M

𝐷
(ℳ(𝜌)∥ℳ(𝜎)

)
. (1)

In this paper, G is usually the set of separable states SEP. Therefore, we abbreviate 𝐸(SEP)
𝑟,M to

𝐸𝑟,M for simplicity. Besides, regularization of an entanglement measure 𝑓 is defined as 𝑓∞(𝜌𝐴𝐵) :=

lim
𝑛→∞

1
𝑛𝑓(𝜌

⊗𝑛
𝐴𝐵).

I. OUR RESULTS

Monogamy relation for relative entropy of entanglement. One of the most fundamental properties
of entanglement is monogamy: the more a quantum system is entangled with another, then the less
it is entangled with the others. For any entanglement measure 𝑓 , one would expect a quantitative
characterization of monogamy of the form 𝑓(𝜌1:23) ≥ 𝑓(𝜌1:2) + 𝑓(𝜌1:3). Although this is really the
case for squashed entanglement [8], relative entropy of entanglement – along with many other en-
tanglement measures – does not satisfy such a strong relation, with the antisymmetric state being a
counterexample [9, 10].

Here, we propose and prove a properly weakened monogamy inequality for relative entropy of
entanglement, by invoking its one-way LOCC variant.
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Theorem 1 For every tripartite quantum state 𝜌𝐴𝐵𝐸 , we have

𝐸𝑟(𝜌𝐵:𝐴𝐸) ≥ 𝐸𝑟,1-LOCC(𝜌𝐴𝐵) + 𝐸∞
𝑟 (𝜌𝐵𝐸), (2)

𝐸∞
𝑟 (𝜌𝐵:𝐴𝐸) ≥ 𝐸∞

𝑟,1-LOCC(𝜌𝐴𝐵) + 𝐸∞
𝑟 (𝜌𝐵𝐸). (3)

Eq. (3) is obtained from Eq. (2) by regularizing both sizes, and it becomes stronger due to the
subadditivity of 𝐸𝑟 and superadditivity of 𝐸𝑟,1-LOCC [7, 11].

It is worth mentioning that Eq. (2) and Eq. (3) are in the form similar to Piani’s superadditivity-like
relation

𝐸𝑟(𝜌𝐴1𝐴2:𝐵1𝐵2) ≥ 𝐸𝑟,M(𝜌𝐴1𝐵1) + 𝐸𝑟(𝜌𝐴2𝐵2),

with M be LOCC or SEP. The difference is that in our result, there is only one single system 𝐵 on the
left side, while it appears twice on the right side. As a result, the price we have to pay is degrading
the measurement class to 1-LOCC and imposing a regularization in the two terms of the right side,
respectively (see Eq. (2)). One the other hand, our proof needs new technique, which is derived in
the context of quantum hypothesis testing under restricted measurement class 1-LOCC.

Commensurate lower bound for squashed entanglement. Following the monogamy relation, we
provide a commensurate and faithful lower bound for squashed entanglement. Instead of the one-
way LOCC trace distance bound in [12], our result is in the form of one-way LOCC relative entropy
of entanglement, which is more natural and stronger.

Theorem 2 For any quantum state 𝜌𝐴𝐵 , we have

𝐸𝑠𝑞(𝜌𝐴𝐵) ≥ 1

2
𝐸∞

𝑟,1-LOCC(𝜌𝐴𝐵) ≥ 1

2
𝐸𝑟,1-LOCC(𝜌𝐴𝐵). (4)

The core inequality for von Neumann entropy, strong subadditivity [13], states that for any tripar-
tite state 𝜌𝐴𝐵𝐸 ,

𝐼(𝐴;𝐵∣𝐸)𝜌 ≥ 0.

Recalling the definition of squashed entanglement, Theorem 2 implies

𝐼(𝐴;𝐵∣𝐸)𝜌 ≥ 𝐸𝑟,1-LOCC(𝜌𝐴𝐵),

and hence strengthens the strong subadditivity inequality by relating it to a distance-like entangle-
ment measure on two of the subsystems.

On the one hand, applying Pinsker’s inequality [14], we are able to recover the trace-distance
bound of [12], even with a slightly better constant factor:

𝐸𝑠𝑞(𝜌𝐴𝐵) ≥ 1

4 ln 2
min

𝜎𝐴𝐵∈SEP
∥𝜌𝐴𝐵 − 𝜎𝐴𝐵∥21-LOCC .

On the other hand, while the trace-distance bound can be at most 𝑂(1), our new bound (4) can be
very large. Indeed, 𝐸𝑟,1-LOCC is asymptotically normalized, in the sense of Proposition 4.

Asymptotic continuity. To quantify the resources in quantum protocols in a physically robust way,
entanglement measures are expected to be asymptotically continuous. Piani’s paper [7] contains
the proofs of several properties of 𝐸(G)

𝑟,M for certain combination of G and M. Now we also show
asymptotic continuity under very general conditions.

We say that a set S is star-shaped with respect to some 𝑥0 ∈ S, if 𝑝𝑥 + (1 − 𝑝)𝑥0 ∈ S for all 𝑥 ∈ S
and 0 ≤ 𝑝 ≤ 1.

Proposition 3 Let M be any set of measurements, and G be a set of states on a quantum system with Hilbert
space dimension 𝑘, containing the maximally mixed state 𝜏 and such that in fact G is star-shaped with respect
to 𝜏 . Let 𝜌, 𝜌′ be two states of the quantum system with ∥𝜌− 𝜌′∥M ≤ 𝜖 ≤ 1

𝑒 . Then,∣∣𝐸(G)
𝑟,M(𝜌)− 𝐸

(G)
𝑟,M(𝜌′)

∣∣ ≤ 2𝜖 log
6𝑘

𝜖
.
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Evaluation on maximally entangled states and pure states. The entanglement measure 𝐸𝑟,M is dif-
ficult to calculate due to the two optimizations in its definition. Here we conduct the first exact
evaluation on maximally entangled states, with M be any of {LO, 1-LOCC, LOCC,SEP,PPT}. The
basic idea is to make use of the symmetry of 1√

𝑑

∑𝑑
𝑖=1 ∣𝑖𝑖⟩, namely, invariance under unitary opera-

tion 𝑈 ⊗ 𝑈 . Then, with the help of asymptotic continuity of Proposition 3, we further obtain their
regularized versions on general pure states.

At first glance, the restricted class of measurements M may make 𝐸𝑟,M much smaller than the
normal relative entropy of entanglement. However, in our case we find that they are almost the same
when the local dimension is very large.

Proposition 4 For the rank-𝑑 maximally entangled state Φ𝑑,

𝐸𝑟,LO(Φ𝑑) = 𝐸𝑟,1-LOCC(Φ𝑑) = 𝐸𝑟,LOCC(Φ𝑑) = 𝐸𝑟,SEP(Φ𝑑) = 𝐸𝑟,PPT(Φ𝑑) = log(𝑑+ 1)− 1. (5)

As a corollary, this implies that for pure state 𝜓𝐴𝐵 , the regularized versions are equal to the entropic pure state
entanglement:

𝐸∞
𝑟,LO(𝜓𝐴𝐵) = 𝐸∞

𝑟,1-LOCC(𝜓𝐴𝐵) = 𝐸∞
𝑟,LOCC(𝜓𝐴𝐵) = 𝐸∞

𝑟,SEP(𝜓𝐴𝐵) = 𝐸∞
𝑟,PPT(𝜓𝐴𝐵) = 𝑆(Tr𝐵 𝜓). (6)

Comparisons between entanglement measures. We consider comparisons and separations between
some important entanglement measures and obtain several new results. These new relations, to-
gether with previous known ones, are summarized in Fig. 1.

Here, 𝐸𝑟,↔(𝜌𝐴𝐵) := 𝐸𝑟,LOCC(𝜌𝐴𝐵) and 𝐸𝑟,→(𝜌𝐴𝐵) := sup{𝐸𝑟,1-LOCC(Λ(𝜌𝐴𝐵)) : Λ being LOCC}.
Note that 𝐸𝑟,→ can be regarded as an “update” of 𝐸𝑟,1-LOCC such that it is LOCC monotone. 𝐸𝐼 is the
conditional entanglement of mutual information [15], and 𝐸𝑠𝑞,𝑐 is the c-squashed entanglement [16].
The others are familiar notions: 𝐸𝑓 is the entanglement of formation; 𝐸𝑐 = 𝐸∞

𝑓 is the entanglement
cost; 𝐾𝑑 is the distillable key and 𝐸𝑑 the distillable entanglement.
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FIG. 1: Relations between some entanglement measures. When two quantities are connected by a line with a
constant above (constant 1 is omitted), it means that the higher one multiplied by the constant is no smaller
than the lower one. For those entanglement measures of which the separation is still unknown, we mark a red
cross on the line that connects them. The upper dashed line divides these entanglement measures into two
groups: the upper ones are subadditive and the lower ones are superadditive. Entanglement measures above the
lower dashed line are faithful, while the only one below this line, 𝐸𝑑, is not faithful [17]. Whether the distillable
key, 𝐾𝑑, is faithful or not, is still an open question. Hence, we put the line on it.
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