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Abstract

We prove a tight quantum query lower bound Ω(nk/(k+1)) for the problem of deciding
whether there exist k numbers among n that sum up to a prescribed number, provided that
the alphabet size is sufficiently large.

The technical version of the paper can be found at [9].

1 Introduction

Two main techniques for proving lower bounds on quantum query complexity are the polynomial
method [6] developed by Beals et al. in 1998, and the adversary method [2] developed by
Ambainis in 2000. Both techniques are incomparable. There are functions with adversary
bound strictly larger than polynomial degree [3], as well as functions with the reverse relation.

One of the examples of the reverse relation is exhibited by the element distinctness function.
The input to the function is a string of length n of symbols in an alphabet of size q, i.e.,
x = (xi) ∈ [q]n. We use notation [q] to denote the set {1, . . . , q}. The element distinctness
function evaluates to 0 if all symbols in the input string are pairwise distinct, and to 1 otherwise.

The quantum query complexity of element distinctness is Θ(n2/3) with the algorithm given
by Ambainis [5]. The tight lower bounds were given by Aaronson and Shi [1], Kutin [14] and
Ambainis [4] using the polynomial method.

The adversary bound, however, fails for this function. The reason is that the function has
1-certificate complexity 2, and the so-called certificate complexity barrier [17, 18] states that the
adversary method fails to achieve anything better than Ω(

√
n) for any function with 1-certificate

complexity bounded by a constant.
In 2006, a stronger, negative-weight version of the adversary bound was developed by Høyer

et al. [12]. Later, the negative-weight adversary bound was proven to be optimal by Reichardt
et al. [16, 15]. Despite this fact, it has almost never been used to prove lower bounds for explicit
functions. Vast majority of lower bounds by the adversary method uses the old positive-weight
version of this method. But since the only competing polynomial method is known to be non-
tight, a better understanding of the negative-weight adversary method would be very beneficial.
In the sequel, we consider the negative-weight adversary bound only, and we will omit the
adjective “negative-weight”.

In this paper we use the adversary method to prove a lower bound for the following variant
of the knapsack packing problem. Let G be a finite Abelian group, and t ∈ G be its arbitrary
element. For a positive integer k, the k-sum problem consists in deciding whether the input
string x1, . . . , xn ∈ G contains a subset of k elements that sums up to t. We assume that k is
an arbitrary but fixed constant. The main result of the paper is the following

∗Faculty of Computing, University of Latvia
†Google, Inc.

1



Theorem 1. For a fixed k, the quantum query complexity of the k-sum problem is Ω(nk/(k+1))
provided that |G| ≥ nk.

Clearly, the 1-certificate complexity of the k-sum problem is k, hence, it is also subject to
the certificate complexity barrier.

The result of Theorem 1 is tight thanks to the quantum algorithm based on quantum walks
on the Johnson graph [5]. This algorithm was first designed to solve the k-distinctness problem.
This problem asks for detecting whether the input string x ∈ [q]n contains k elements that
are all equal. Soon enough it was realized that the same algorithm works for any function
with 1-certificate complexity k [11], in particular, for the k-sum problem. The question of the
tightness of this algorithm remained open for a long time. It has been known to be tight for
k = 2 due to the lower bound for the element distinctness problem. Now we know that it is not
optimal for the k-distinctness problem if k > 2 [8]. However, Theorem 1 shows that, for every k,
quantum walk on the Johnson graph is optimal for some functions with 1-certificate complexity
k. Finally, we note that the k-sum problem is also interesting because of its applications in
quantum Merkle puzzles [10, 13].

In fact, we get Theorem 1 as a special case of a more general result we are about to describe.
The following is a special case of a well-studied combinatorial object:

Definition 2. Assume T is a subset of [q]k of size qk−1. We say that T is an orthogonal array
of length k iff, for every index i ∈ [k] and for every vector x1, . . . , xi−1, xi+1, . . . , xk ∈ [q], there
exists exactly one xi ∈ [q] such that (x1, . . . , xk) ∈ T .

For x = (xi) ∈ [q]n and S ⊆ [n] let xS denote the projection of x on S, i.e., the vector
(xs1 , . . . , xs`) where s1, . . . , s` are the elements of S in the increasing order.

Assume each k-subset S of [n] is equipped with an orthogonal array TS . The k-orthogonal
array problem consists in finding an element of any of the orthogonal arrays in the input string.
More precisely, the input x ∈ [q]n evaluates to 1 iff there exists S ⊆ [n] of size k such that
xS ∈ TS . Consider the following two examples:

Example 3. Let G be a commutative group with q elements and t ∈ G. T = {x ∈ Gk :∑k
i=1 xi = t} is an orthogonal array of length k. This choice corresponds to the k-sum problem

of Theorem 1.

Example 4. T = {x ∈ [q]2 : x1 = x2} is an orthogonal array of length 2. This corresponds to
the element distinctness problem from [7].

Theorem 5. For a fixed k and any choice of the orthogonal arrays TS, the quantum query
complexity of the k-orthogonal array problem is Ω(nk/(k+1)) provided that q ≥ nk. The constant
behind big-Omega depends on k, but not on n, q, or the choice of TS.

The orthogonal array condition specifies that even if an algorithm has queried k−1 elements
out of any k-tuple, it has the same information whether this k-tuple is a 1-certificate as if it had
queried no elements at all. Because of this, the search for a k-tuple as a whole entity is the best
the quantum algorithm can do. Our proof of Theorem 5 is a formalization of this intuition.

2 Techniques used

If the size of the alphabet is big enough then almost all inputs are negative, i.e., they do not
contain elements of TS . We use this observation to approximate the set of negative inputs by
the set of all possible input strings [q]n. This may seem faulty, because in this case any positive
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input figures as a negative one, hence, it is easy to come up with an adversary matrix having
arbitrary large objective value. We do not fall victim to this, because the building blocks we
construct our adversary matrix from are robust to this approximation.

We split the set of the positive inputs into
(
n
k

)
subsets labelled by k-subsets of [n]. The

inputs in the block labelled by S consists of all inputs x satisfying xS ∈ TS . Some inputs
appear more than once, but it is fine.

By extending the set of negative inputs, we bring independence to their values. We can
describe the matrices as the elements of the Hamming association scheme, i.e, as various tensor
products featuring two q × q matrices E0 and E1 defined by

E0[[x, y]] =
1

q
, E1[[x, y]] =

{
1− 1/q, x = y;

−1/q, x 6= y.

These are orthogonal projectors, and ∆j from the adversary bound transforms E1 in the jth
position into −E0. By using these properties, we were able to construct the adversary matrix.

3 Summary

The polynomial-based proof of the lower bound for the element distinctness problem is rather
circuitous: The element distinctness problem is reduced to the collision problem, and the lower
bound is proven for the latter. We give a direct proof for a more general problem using the
adversary method. To our knowledge, this is the first application of the negative-weighted
adversary that does not rely on the composition results. We hope these techniques will be
useful in proving lower bounds for other functions, such as set equality, k-distinctness, and
others.
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[9] A. Belovs and R. Špalek. Adversary lower bound for the k-sum problem. 2012,
arXiv:1206.6528.

[10] G. Brassard, P. Høyer, K. Kalach, M. Kaplan, S. Laplante, and L. Salvail. Merkle puzzles
in a quantum world. In CRYPTO 2011, pages 391–410. Springer, 2011, arXiv:1108.2316.

[11] A. Childs and J. Eisenberg. Quantum algorithms for subset finding. Quantum Information
& Computation, 5(7):593–604, 2005, arXiv:quant-ph/0311038.
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