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We introduce a new framework that yields spectral bounds on norms of functions of tran-
sition maps for finite, homogeneous Markov chains. The employed techniques work for clas-
sical as well as for quantum Markov chains and they do not require additional assumptions
like detailed balance, irreducibility or aperiodicity. We use the method in order to derive
convergence bounds which improve significantly upon the known spectral bounds. The core
technical observation is that power-boundedness of transition maps of Markov chains enables
a Wiener algebra functional calculus in order to upper bound any norm of any holomorphic
function of the transition map.

I. INTRODUCTION

Across scientific disciplines, Markov chains are ubiquitous in algorithms as well as in models for
time evolutions. In many cases one is interested in when their limit behaviour is setting in. For
algorithms this is often necessary in order to extract the right information and for time evolutions of
physical systems this is the time scale on which relaxation or equilibration takes place. Some of the
most widespread tools for bounding this time scale are based on the spectrum of the transition map.
For time-homogeneous Markov chains with finite state space, the transition map is a stochastic
matrix in the classical context and a completely positive trace-preserving map in the quantum
case. Since these maps have spectral radius equal to 1, it is somehow clear that only eigenvalues
of magnitude one survive the limit, that the largest subdominant eigenvalue governs the speed of
convergence, and that the rest of the spectrum only matters on shorter time scales. When making
this mathematically rigorous, one typically employs additional properties of the Markov chain such
as detailed balance, irreducibility, aperiodicity, uniqueness of the fixed point, Gibbs distribution
of the stationary state, etc.. Clearly, these assumptions are not always fulfilled—in particular
in the quantum context, especially in the framework of dissipative quantum computing [11] and
dissipative state preparation [2, 3, 11], they typically fail to hold.

The goal of the present work is to derive non-trivial upper bounds which depend exclusively on
the spectrum of the transition map. Such bounds are of general interest for the theory of Markov
chains, especially they are related to the sensitivity of the chain to perturbations [4, 5, 10], are used
to study “cut-off” phenomena [1] and random walks on groups [9]. Before coming to our approach,
a brief discussion of two more traditional, linear algebraic, approaches is in order. If 7 and T
are the transition map and its asymptotic part, respectively, then a Jordan decomposition of the
difference of the two maps yields a bound of the form

IT" = T2l < Ou~Fnt (1)

after n time steps. Here p is the magnitude of the largest eigenvalue inside the open unit disc and
k + 1 is the size of the largest corresponding Jordan block. C' is constant w.r.t. n, but it depends
on 7T as it is essentially the condition number of the similarity transformation appearing in the
Jordan decomposition. Unfortunately, there is no a priori bound on this condition number. An
alternative way is to use Schur’s instead of Jordan’s normal form. This leads indeed to a similar
expression as in Eq.(1) where C' can be bounded independent of 7, albeit not of n, and we obtain
something like C' ~ (Dn)P, where D is the dimension of the underlying vector space. Needless to



say, this “constant” seems to be far from optimal and motivates a more elaborate analysis and the
use of a new toolbox.

The method which we employ appears to be new to the theory of Markov processes and it
enables us in principle to derive spectral bounds on norms of arbitrary functions of transition
maps. When applied to power functions, we basically obtain the sought convergence bounds.

II. THE METHOD

We consider the following basic task. Given an arbitrary norm |-| and some sufficiently regular,
say holomorphic, function f, obtain an upper bound for |f(7)| as a function of the spectrum of
T.

The first, simple but crucial observation on this way is that transition maps are power bounded
operators, meaning that there is a C' € R so that for all 7 and n € N we have |7"| < C. One
way to see this is that by the Russo-Dye theorem it holds true for the diamond norm |7"|, =1
and thus, by the equivalence of norms in finite dimensional Banach spaces, also for any other norm
for some C' € R. General power-bounded operators are extensively studied in the mathematical
literature [6-8] but, to the best of our knowledge, this hasn’t found its way into the analysis of
convergence properties of Markov chains.

The power boundedness condition can now be exploited in order shift our problem from spaces of
operators to function spaces, which then offer a plethora of powerful tools to conduct the analysis.
The basic idea is the following: instead of trying to estimate | f(7)| directly, we consider a normed
space of holomorphic functions, (A,||,) and a map J7 that relates the original Banach space
of transition maps (%, |-|) to (4, |-|,). The map Jr : A — T with f — f(7) then corresponds
to plugging the operator 7 into the function f. Suppose that for all transition maps |J7| :=

SUP e g H‘T]:"(?H < C holds. It follows immediately that |f(7)| < C|f]4. In the mathematical

literature A is referred to as a functional algebra and J7 as a functional calculus.
In our context, it is natural to start with the Wiener algebra W of absolutely convergent

holomorphic functions on the open unit disc,

W= {r =3 )2 | 17l = Y 1F (k)] < oo},

k>0 k>0

where the f (k)’s are now the Taylor coefficient of the holomorphic function f. The basic reason
for this is that for any function f € W we can apply the triangle inequality and bound

LI 1w 7 | < cliwl=clfly - (2)
k>0 k>0

At first glance this appears to be of little use since the right hand side no longer depends on 7T,
if we invoke standard functional calculus. We can, however, tailor J7 to 7 and exploit spectral
properties of 7 to significantly strengthen the inequality (2). To see this, let {\;} be the spectrum
of T and consider natural numbers k; and a polynomial p7(z) = [[;(z —A;)* which by construction
has the property that py(7) = 0. Classical examples of polynomials that enjoy this property are,
by the Cayley-Hamilton theorem, the characteristic polynomial and the minimal polynomial m.
Since by definition m7 is the minimal degree polynomial with my(7) = 0, the most general case
is to consider m7g with g € W arbitrary. For any f,g € W we have then that |(f + m7g)(T)| =
If(T) +mr(T)g(T)| = |f(T)| and an application of (2) reveals that for all ¢ € W we have
1f(T)| < |f +m7g|y,- This leads us to the following simple but crucial observation:



Lemma 1. Classical and quantum Markovian maps obey a Wiener algebra functional calculus: Let
|| be any norm such that for every transition map T € T we have that |T| < C. Then

1A < Clf lw)mrw
holds for any function f € W, where HfHW/mTW =inf{|f +m7g|y | g € W}.

By going to the quotient space W/msW this makes use of the entire spectrum of 7. Of course,
all the technical work is still ahead and goes into computing or bounding | f HW/mTW. To this end,
however, an extensive literature exists [6-8] which also offers smart choice for g.

III. A PURELY SPECTRAL BOUND ON THE LIMIT BEHAVIOUR

We now use the above observation in order to derive a spectral bound on |7™ — 72Z|. To this
end, note that 7" — T2 = (T —To)™ and that the latter is power bounded for instance with C' = 2
for the diamond norm.

Theorem 2. Let T € T be the transition map of a classical or quantum Markov chain and let
Too be the map describing its limit behaviour. We write m = my_1,_ for the minimal polynomial,
o(T —Tx) = {A1, ..., A\p} for the spectrum and p = |\p| for the spectral radius of T — Ts. Finally,
let || be any norm such that |T| < C for all T € T. Then for n > £ we have

1T = T2l < 4Ce/Imi(Im| +1) b Blm.n), (3)
(1= (L +)m)
1— (1+ D)\
B(m, = n . 4
= L @

Here, the product is taken over all i such that the corresponding linear factor (z — \;) occurs in a
prime factorization of m/(z — Ap) respecting multiplicities.

Note that the bound is, as expected, asymptotically dominated by the factor u" and that the
dimension-dependent pre-factor is at most ~ D32 (when |m| = D) and in this sense benign.
The (inverse) Blaschke produkt B takes care of possibly appearing Jordan blocks or perturbations
thereof. There is evidence, albeit at this point on more heuristic footing, that for purely spectral
bounds, there is not much room for improvement. A closer analysis, together with a detailed proof,
can be found in the technical part of the submission.

Needles to say, there are only few cases where the entire spectrum of the transition map is
known. These cases include random walks on groups [9]. However, even if the information about
the spectrum is not very detailed, one can again bound the above expression and one still arrives
at an improvement on the bound based on the Schur decomposition. Admittedly, if additional
assumptions are fulfilled, in particular if detailed balance holds, the chain is irreducible, aperiodic
and has a Gibbsian stationary state, then, the traditional bounds which are enabled by these
properties, typically outperform the above bound if the same g is chosen—these properties (if
valid) can provably not be inferred from the spectrum alone.
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