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The two-dimensional cluster state, a universal resource for measurement-based quantum
computation, is also the gapped ground state of a short-ranged Hamiltonian. Here, we exam-
ine the effect of perturbations to this Hamiltonian. We prove that, provided the perturbation
is sufficiently small and respects a certain symmetry, the perturbed ground state remains
a universal resource. We do this by characterizing the operation of an adaptive measure-
ment protocol throughout a suitable symmetry-protected quantum phase, relying on generic
properties of the phase rather than any analytic control over the ground state.

Introduction

A quantum computer relies on quantum entanglement to achieve computational speedups. In
the traditional, circuit-based model for quantum computation, the required entanglement is built
up throughout the course of the computation through application of entangling gates coupling two
or more qubits at a time. Alternatively, in the model of measurement-based quantum computation
(MBQC) [1, 2], universal quantum computation is achieved solely through single-particle operations
(specifically, single-particle measurements) on a fixed entangled resource state, independent of the
quantum algorithm being performed.

Since the initial discovery that the 2-D cluster state is a universal resource for MBQC [1], much
effort has been devoted to characterizing other universal resource states. Many of the universal
resource states so far identified [1, 3–6] have been projected entangled pair states (PEPS) [7] of
small bond dimension. The tensor network structure of these states facilitates the analysis of
measurements, which might otherwise be an intractable problem. Another advantage of such
states is that under appropriate conditions [8], they are unique (possibly gapped) ground states
of local frustration-free Hamiltonians on spin lattices. This suggests a method of constructing the
resource state by cooling an appropriate interacting spin system [9, 10].

However, if we wish to adopt this viewpoint of the resource state for MBQC as the ground
state of a quantum spin system, it would be too restrictive to confine ourselves to states in which
the effect of measurements can be determined analytically from the tensor-network structure. A
generic local Hamiltonian, or even an arbitrarily small generic local perturbation to a PEPS parent
Hamiltonian, will not have such a property. Therefore, it is desirable to develop an understanding
of MBQC in ground states of spin systems that does not rely on analytic control of the ground state.
For this reason, there has been an interest in relating MBQC to forms of quantum order which,
as parameters of the Hamiltonian are varied, can disappear only at a quantum phase transition
[11–13].

In this paper, we use such a connection between MBQC and quantum order to give a precise
characterization of the operation of MBQC in the ground states of a large class of perturbations to
the 2-D cluster model. This allows us to give a rigorous proof that such perturbed ground states re-
main universal resources for MBQC provided that the perturbation is sufficiently small. Our proof
relies in part on an extension of the the relationship we introduced in [13] between MBQC and
symmetry-protected topological (SPT) order [14–16], a form of quantum order characterizing quan-
tum systems which cannot be smoothly deformed into a product state while a certain symmetry
is enforced. If the perturbation to the 2-D cluster model respects an appropriate symmetry, then
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the perturbed ground state will still possess non-trivial SPT order, and we show that this gives us
sufficient information about the ground state to characterize the implications of the perturbation
for MBQC. Our result therefore holds independently of any analytic solution for the perturbed
ground state.

Our proof of universality is in the same spirit as Nielsen and Dawson’s fault-tolerance proof for
cluster state quantum computing [17]. There, it was shown that, whereas measurements on the
cluster state simulate quantum circuits, measurements on a noisy cluster state simulate the same
circuits, but with added noise. Here, our task is complicated by the highly correlated nature of the
“errors” in the resource state that result from a change in the Hamiltonian. Nevertheless, we will
show how to exploit the additional structure resulting from SPT order to establish an effective noise
model for ground states of appropriate perturbed cluster models. Therefore, universal quantum
computation can be achieved (for sufficiently small perturbations, corresponding to sufficiently
weak noise in the effective circuit model) by choosing a measurement protocol which simulates a
fault-tolerant quantum circuit. The universality is then a consequence of the threshold theorem [18]
for fault-tolerant quantum computation with noisy quantum circuits.

Summary of results

Our ultimate goal in our paper is to prove the universality for a MBQC of a class of perturba-
tions of the 2-D cluster state. However, in order to reach this goal, most of our attention is devoted
to a further elucidation of the relationship between SPT order and MBQC. We first explore this
relationship in one-dimensional systems, where we have previously shown that, in a class of quan-
tum phases characterized by SPT order, the structure implied by SPT order leads to the perfect
operation of the identity gate in MBQC [13]. By considering the 1-D cluster model, which lies in
the simplest of the SPT phases considered in [13], we characterize the operation of non-trivial (i.e.,
not the identity) gates in the presence of a perturbation which respects the symmetry protecting
this SPT phase. We obtain the following:

Theorem 1 (Effective noise model in one dimension). Consider a measurement protocol which in
the exact 1-D cluster model would simulate a sequence of gates. In the perturbed resource state, the
same measurement protocol simulates the same gate sequence, but with additional noise associated
with each non-trivial gate. So long as the non-trivial gates are sufficiently separated from each
other by identity gates, this effective noise has no correlations between different time steps, i.e. it
is Markovian.

The proof of Theorem 1 is divided into two stages. First, we establish Theorem 1 for ground
states which are pure finitely-correlated states (pFCS), a special case of matrix-product states
(MPS). For such states, both the manifestations of SPT order [15, 16], and the effect of mea-
surements [3] can be understood straightforwardly in terms of the tensor-network structure. The
ideas leading to Theorem 1 can be understood most directly in this context. Second, we prove
Theorem 1 for arbitrary ground states within the SPT phase.

We then extend these ideas to the 2-D cluster model. We construct an appropriate symmetry
group, such that the following result is satisfied for symmetry-respecting perturbations.

Theorem 2 (Effective noise model in two dimensions). Consider a measurement protocol which in
the exact 2-D cluster model would simulate a sequence of gates. In the perturbed resource state, the
same measurement protocol simulates the same gate sequence, but with additional noise associated
with each gate. So long as the non-trivial gates are sufficiently separated from each other by identity
gates, this effective noise has no correlations between different time steps, or between different gates
taking place at the same time step, i.e., it is local and Markovian.



3

Combined with the existing results on fault tolerance in the circuit model [18], Theorem 2
implies the main result of our paper:

Theorem 3. For sufficiently small symmetry-respecting perturbations, the perturbed ground state
remains a universal resource (using ideal measurements) for measurement-based quantum compu-
tation.

Full details are found in Else, Bartlett, and Doherty, arXiv:1207.4815.
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