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Summary. In [1] we prove two new quantum versions of the de Finetti theorem, both showing
that under tests formed by local measurements in each of the subsystems one can get a much
improved error dependence on the dimension of the subsystems. We also obtain similar results
for non-signalling probability distributions. We give the following applications of the results:

• We prove the optimality of the Chen-Drucker [2] BellQMA(
√
n polylog(n)) protocol for 3-

SAT, under the assumption there is no subexponential-time algorithm for SAT: We show
that any similar protocol in BellQMA(n1/2−ε polylog(n)) would imply a exp((Õ(n1−2ε))-time
algorithm for 3-SAT.

• We show that the maximum winning probability of free games (in which the questions to
each prover are chosen independently) can be estimated in polynomial time by linear pro-
gramming (for constant output alphabet). We also show that 3-SAT with m variables can
be reduced to obtaining a constant error approximation of the maximum winning probabil-
ity under entangled strategies of O(

√
m)-player one-round non-local games, in which the

players communicate O(
√
m) bits all together.

• We show that the optimization of certain polynomials over the hypersphere can be per-
formed in quasipolynomial time in the number of variables n by considering O(log(n))
rounds of the Sum-of-Squares (Parrilo/Lasserre) hierarchy of semidefinite programs. This
can be considered an analogue to the hypersphere of a similar result by Powers and Reznick
for the simplex [3]. We also give a quasipolynomial-time algorithm for deciding multipar-
tite separability.

• We consider a result due to Aaronson [4] – showing that given an unknown n qubit state
one can perform tomography that works well for most measurement settings by measuring
only O(n) independent and identically distributed (i.i.d.) copies of the state – and relax the
assumption of having i.i.d copies of the state to merely the ability to select subsystems at
random from a quantum multipartite state.

Background. An important technique in the study of entanglement are quantum versions of
the de Finetti theorem, stating that an l-partite quantum state ρA1...Al that is a reduced state of a
permutation-symmetric state on k ≥ l subsystems is close (for k � l) to a convex combination
of i.i.d. quantum states, i.e. ρA1...Al ≈

∫
µ(dσ)σ⊗l for a probability measure µ on quantum states.

The quantum version appears very similar to the original de Finetti theorem [5], but it is much
more remarkable. Not only it says that the correlations are arranged in an organized fashion (as
a convex combination of i.i.d. states) but also that the state of l subsystems is close to a separable,
non-entangled, state. A well-known property of entanglement is that it is monogamous: A quan-
tum system cannot be highly entangled with a large number of other systems. The quantum de
Finetti theorems provide a quantitative statement for the monogamy of entanglement; in a sym-
metric state all the subsystems are equally correlated with all the others and so any small number
of subsystems can be only lightly entangled.

We now know several possible quantum versions of the de Finetti theorem [6–10]. A natural
way to quantify the closeness to convex combinations of i.i.d. states is by the trace norm, in which
case we know the bound must be at least linear in the local dimension of the state [7]. However
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in many applications this error is too large to be useful. One possible way forward is therefore to
consider other ways of quantifying the approximation rather than the trace norm. There are two
known quantum de Finetti theorems following this idea. The first is the exponential de Finetti
theorem of Renner [8]. The second is the de Finetti theorem proved in Ref. [10]. Both results have
found interesting applications [8, 11, 12] and [13]. These two results suggest that more quantum
versions of the de Finetti theorem might exist. In [1] we show that this is indeed the case.

Another interesting approach to the study of quantum entanglement is to analyze its role in
quantum proof systems. The goal there is to understand how useful are entangled states for con-
vincing a verifier the truth of a mathematical statement. In [1] we consider two particular proof
systems: The first is the setting of multiple provers that share entanglement and are only allowed
to communicate with the verifier and not with each other [14]. The second is the setting of non-
interactive multiple proof protocols with the assumption that the proofs are not entangled [15].
Both settings have been extensively studied in the past (see e.g. [16–26] and [2, 10, 27–38]), al-
though there are still many interesting open questions concerning them.

Main results. A state ρAB is k-extendible if it is a reduction of a state ρAB1...Bk
which is

permutation-symmetric in the B subsystems. The first main result of [1] reads

Theorem 1. Let ρAB ∈ D(A⊗B) be a k-extendible state and µ(m) a distribution over quantum operations
{ΛA,m}m, with ΛA,m : D(A)→ D(X). Then

min
σ∈Sep(A:B)

max
ΛB∈M

E
m∼µ

∥∥ΛA,m ⊗ ΛB
(
ρAB − σAB

)∥∥
1
≤
√

2 ln |X|
k

. (1)

We also prove a completely analogous result for non-signalling distributions. The most impor-
tant aspect of the theorem is that the error term is independent of the subsystem dimensions of
ρAB , and only depends on the output dimension of the family of quantum operations {ΛA,m}m.
The de Finetti bound from Ref. [10] can be recovered (with an improved constant) as a special
case of the theorem. The second main result of [1] is a generalization of the result of Ref. [10] to
an arbitrary number of subsystems:

Theorem 2. Let ρA1...Ak ∈ D(A⊗k) be permutation-invariant. Then for every there is a measure ν s.t.

max
Λ2,...,Λl∈M

∥∥∥∥(I⊗ Λ2 ⊗ ...⊗ Λl)

(
ρA1...Al −

∫
ν(dσ)σ⊗l

)∥∥∥∥
1

≤
√

2l2 ln |A|
k − l

. (2)

The proof of both theorems are based on information theory and are significantly simpler and
more direct than the arguments in [10].

Application 1: Multiple Unentangled Proofs. The first application concerns a protocol due to
Chen and Drucker [2] in which a prover sends to a verifier

√
n polylog(n) unentangled quantum

states, each composed of log(n) qubits, as a proof of the satisfiability of a 3-SAT instance with n
variables and O(n) clauses. The quantum verifier then checks the validity of the proof by per-
forming local quantum measurements on each of the proofs and post-processing the outcomes.
This result, based on the previous work [27, 28], is surprising since one can convince a verifier
the satisfiability of a 3-SAT instance by sending only

√
n polylog(n) qubits! It is a natural question

whether the total number of qubits could be decreased even further. We give strong evidence
against any further reduction: We show that any similar protocol with O(n1/2−ε) proofs, for any
ε > 0, would imply in a 2Õ(n1−2ε)-time algorithm for 3-SAT, establishing the optimality of the
protocol under the assumption [39] that there is no subexponential-time algorithms for SAT.

A related, but harder, problem is whether QMA(2) protocols can give at most a quadratic reduc-
tion in proof size with respect to QMA (by Ref. [29] we know QMA(2) gives at least a quadratic
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advantage over QMA, under plausible computational complexity assumptions). We conjecture
that this is the case, and believe that our result gives evidence in favor of this conclusion, as well
as a possible avenue towards proving it (i.e. using a further-improved de Finetti theorem).

Application 2: Non-local Games. The second application concerns the computational complexity
of non-local games. We give two results in this direction. The first is algorithmic and concerns
the class of free games, defined as games in which the questions to each prover are chosen inde-
pendently. We show that the maximum winning probability of such games can be approximated
within additive error ε in time exp

(
O(log(|Q||A|) log |Q|/ε2)

)
, with |Q| and |A| the number of

questions and answers of the game, respectively, by solving a linear program. Although this is
a purely classical result, we establish it by exploring a connection to non-local games: We show
that for any two-player one-round free game, one can find another game on m players such that
the maximum winning probability under non-signalling strategies, which can be computed by
a linear program [40], gives a (ln |A|/(2m))1/2-additive approximation to the maximum winning
probability of the original game. Since non-signalling strategies are at least as powerful as entan-
gled strategies, the same result holds also for games in which the players share entanglement.

Using the relation above, we also show that 3-SAT on m variables can be reduced to obtaining
a constant-error approximation of the maximum winning probability under entangled strategies
of O(

√
m)-player one-round non-local games, in which the players communicate O(

√
m) bits all

together. Finally, we show how one would be able to get even NP-hardness of approximating the
maximum winning probability under entangled strategies of a 4-player one-round game if one
could strengthen the first new quantum de Finetti theorem (namely by changing the order of the
expectation and the maximization in Eq. (1)). This gives a new approach to this problem, which
is one of the most outstanding open questions concerning non-local games.

Application 3: Polynomial Optimization. We consider the connection [41–43] between quantum
de Finetti theorems and the optimization over separable states, on one hand, and polynomial op-
timization and the Sum-of-Squares (Parrilo/Lasserre) hierachy, one other hand, and prove that
the optimization of certain degree-d polynomials over the n-dimensional hypersphere can be per-
formed in quasipolynomial-time in the number of variables by considering O(log(n)d2) rounds
of the Sum-of-Squares hierarchy of semidefinite programs. This result can be considered as an
extension to the hypersphere of similar results for the simplex [3].

Application 4: Separability Testing. Another application is to give an algorithm for deciding
separability of multipartite states which is quasi-polynomial in the local dimensions of the sub-
systems. Given a multipartite state ρA1,...,Al

, we prove one can decide whether it is fully separable

or ε-away from separable in time exp
(
O
(

(
∑

k ln |Ak|)2 l2ε−2
))

, with distance measured either
by the one-way LOCC norm [44] or by a multipartite version of the Frobenius norm introduced
in [45]. This generalizes the findings of [13] from bipartite states to general multipartite states.

Application 5: Efficient State Tomography. A final application of the new de Finetti theorems
is to quantum state tomography. The starting point is a result due to Aaronson [4], based on
computational learning theory, showing that given an unknown n-qubit state one can perform
tomography that works well for most measurement settings by measuring only O(n) i.i.d. copies
of the state. Theorem 2 allows us to relax the assumption of having i.i.d. copies of the state (which
can never be fully certified), showing that the same conclusions holds true for arbitrary quantum
states, as long as one can selects a few of its subsystems at random and performs the original
scheme on them.
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