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Motivation and Background: A quantum k-local Hamiltonian on n qudits is a d" x d" Hermitian
matrix H of the form

H:ZH 1)

where each term H; acts non-trivially on at most k& qudits and ||H;|| < 1. Local Hamiltonians are
ubiquitous in physics, where interactions are almost always few-body. Of particular interest, e.g.
in condensed matter physics, is to understand the low-energy properties of local Hamiltonians. A
benchmark problem, termed the local Hamiltonian problem, is to approximate the ground-state
energy (i.e. the minimum eigenvalue) of the model. What is the computational complexity of this
task?

In a seminal result Kitaev proved that the local Hamiltonian problem is complete for the quan-
tum complexity class QMA, in the regime of estimating the energy to within polynomial accuracy
in the number of particles of the model [2]. Kitaev’s result has been developed into a new area
around the question of understanding the computational complexity of local Hamiltonians, at the
crossover of quantum complexity theory and condensed matter physics: quantum Hamiltonian
complexity [9].

The local Hamiltonian problem can be seen as a quantum analogue of constraint satisfac-
tion problems (CSPs) and Kitaev’s result as a quantum version of the Cook-Levin theorem. Let
unsat(C) be the fraction of the total number of local constraints that are not satisfied in the best
possible assignment for C. Then one formulation of the Cook-Levin theorem is that it is NP-hard
to compute unsat(C) for an arbitrary CSP C. However this leaves open the possibility that one
might be able to approximate unsat(C) to within small error in reasonable time.

The objective of the theory of approximation algorithms is find out in which cases one can
obtain in polynomial time approximate solutions to problems that are hard to solve exactly. This
is by now a well developed theory [10]. The quantum case, in contrast, is largely unexplored
(see however [11-14]). It is also interesting to understand what are the limitations for obtaining
approximation algorithms; this is the goal of the theory of hardness of approximation, where one
is interested in proving the computational hardness of obtaining even approximate solutions. A
landmark result in this theory, on which almost all other hardness of approximation results are
based, is the PCP Theorem [15-17]. One possible formulation is in terms of 2-CSPs and states:
There is a constant 9 > 0 such that it is NP-hard to determine whether for a given 2-CSP C,
unsat(C) = 0 or unsat(C) > «o.

As well as developing a quantum theory of approximation algorithms, a theory of hardness
of approximation for QMA would also be an interesting development. Inspired by the PCP theo-
rem we might be tempted to speculate a quantum hardness of approximation result for the local
Hamiltonian problem. Consider a local Hamiltonian H = > ", H;, and denote the minimum
eigenvalue of H by Ey = Ey(H). The mean ground-state energy is defined by eo(H) := %
The mean ground-state energy is the quantum analogue of the unsat value of CSPs. A central
open problem in quantum Hamiltonian complexity is the following [9, (13,14, 18-21]:

Conjecture 1 (Quantum PCP Conjecture). There is a constant e > 0 such that it is QMA-hard to
decide whether for a 2-local Hamiltonian H, eo(H) = 0 or eo(H) > eo.



One could also consider the conjecture for k-local Hamiltonians. However it has been proved
that Conjecture([I]is equivalent to this more general version, even when restricted to 2-local Hamil-
tonians with sites formed by qubits [20].

A way to refute the quantum PCP conjecture is to show that the estimation of the mean ground-
state energy can be realized in NP. In [1] we follow this approach and give new approximation
guarantees for the local Hamiltonian problem in the regime of extensive error.

Statement of Main result: The main result of our paper [1] shows that one can obtain a good
approximation to the mean ground-state energy by a product state (after coarse-graining some of
the sites) for a large class of 2-local Hamiltonians. To every 2-local Hamiltonian we can associate
a constraint graph G = (V, E) with V the set of vertices associated to the sites of the Hamiltonian,
and F the set of edges associated to the interaction terms of the Hamiltonian. Given a graph G =
(V, E) and a subset of vertices S, we define the expansion of S as ®¢(S) := Pr(y,)ep (v ¢ S|u € S).
The expansion of the graph G is defined as ®¢ := ming,s|<|v|/2 Pc(S5)-

Theorem. Let H be a 2-local Hamiltonian on n d-dimensional particles defined on a regular graph G =
(V, E) of degree deg(G). Then for every state p, integer m > 1, and every partition of the vertices into sets
{Xz}zg'f, each composed of m particles, there is a product state |11, ...,y /) (With [1;) a state on the
space associated to X;) such that
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where 1(X; : X{), the mutual information of X; with its complementary region X{ in the state p.
In particular choosing p = o, with 1o := |1o) (0| the projector onto a groundstate |1o) of H,
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where S(X;)y, is the von-Neumann entropy of trxe(vo), with trxe the partial trace over all sites in X{.

The theorem gives a non-trivial approximation in terms of three parameters: the average ex-
pansion of the regions X;, the degree of the graph, and the average entanglement of the regions
X; with their complement. Below we discuss the relevance of last two of them (since the first is a
well-known fact).

Degree of the Graph: An easy consequence of the PCP theorem [15H17] is the following fact: For
any constants c,«, 8 > 0, it is NP-hard to determine whether a 2-CSP C, with alphabet 3 on a
constrained graph of degree deg, is such that unsat(C) = 0 or unsat(C) > ¢|%|*/deg”.

Assuming QMA ¢ NP, the theorem shows the analogous result for the quantum case — namely
that it is QMA-hard to achieve a cd®/deg” approximation for the mean ground-state energy of
2-local Hamiltonians — is not true. This suggest a route for a disproof of the quantum PCP con-
jecture by trying to a find a procedure for increasing the degree of the constraint graph without
decreasing the mean ground-state energy of the model (by possibly increasing the dimension of
the particles as well). Classically this can be achieved by parallel repetition of the CSP (see Prop.
4 of [1]] ), but it is unclear whether there is an analogous construction in the quantum case.

The approximation in terms of the degree can be interpreted as an instance of monogamy of en-
tanglement [22], a feature of quantum correlations that says a system cannot be highly entangled
with a large number of other systems. If the degree is high, it means that every particle is con-
nected to many others by an interaction term. But since it cannot be highly entangled with many
of them, we might expect that a product state gives a reasonable approximation to the energy of
most such interactions. Indeed based on this idea it is folklore in condensed-matter physics that



mean field (where one uses a product state as an ansatz to the groundstate) becomes exact once
the dimension of the interaction lattice increases. The approximation we obtain here in terms of
the degree of the graph gives a rigorous justification to this intuition. Finally the result also gives
an approximation for highly expanding graphs by using the bound ®¢ < 1/2— Q(deg™/?) relating
the expansion and the degree. Thus graphs with almost maximum expansion & — 1/2 are not
candidates for QMA-hard instances.

Average Entanglement: The theorem shows that we can obtain a classical proof of size O(n2°(™)
that proves eg(H ) to be small whenever the groundstate satisfies a subvolume law for entangle-
ment, i.e. whenever we can find a partition of the sites into regions X; of size m such that in the
groundstate their entanglement (with the complementary region) is sublinear in the number of
particles of the region.

There is a general intuition that the amount of entanglement in the groundstate of a Hamil-
tonian should be connected to its computational complexity (see e.g. [24]), which can be made
precise in 1D assuming an area law for entanglement. Here we find a similar situation, but with
important differences. On one hand the result is weaker in that it only implies an efficient clas-
sical description of the groundstate for estimating the mean ground-state energy; on the other
hand the result is much more general, being true for 2-local Hamiltonians on general interaction
graphs and only requiring a subvolume law instead of an area law. This new relation of entan-
glement and computational hardness gives a motivation for studying the entanglement scaling in
groundstates of Hamiltonians on more general graphs than finite dimensional ones.

Another interesting choice for the state p in Theorem |is the thermal state of the Hamiltonian at
temperature T: pr := exp(—H/T)/ tr(exp(—H/T)). Using the bound |E|™! tr(Hpr) < eo(H) + €
for T = O(d~'e) we find there are states satisfying ﬁ(mpl, coos Ui H 15 o ) < eo(H) + €+
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a subvolume law for the mutual information for constant, but arbitrary small, temperatures are
also not candidates for QMA-hard instances. We find this observation interesting since it is much
easier to prove area laws for thermal states than for groundstates [25].

The approximation in terms of the average mutual information means that in order for the
quantum PCP conjecture to be true we must find a family of Hamiltonians on qubits whose
groundstate satisfy a strict volume law for the mutual information of every region of size n°(!). To
the best of our knowledge there is no known example of a Hamiltonian with this property. Thus
to find one emerges as a natural problem if one is willing to prove the quantum PCP conjecture. In
turn, proving that no such family of Hamiltonians exists would entail a disproof of the conjecture.

. Therefore Hamiltonians for which the thermal state satisfies

Other Results: In the paper [1] we also give polynomial-time algorithms for approximating the
mean ground-state energy of two classes of models: (i) 2-local Hamiltonians on planar graphs
of arbitrary degree, and (ii) dense k-local Hamiltonians for any k. These existence of these two
algorithms solve open problems from [11] and [12], respectively.

Techniques: The proofs of our results are based on information theory. We explore the idea that
given a multipartite quantum state, by measuring a few of the subsystems one can make all suffi-
ciently small subset of subsystems close to product, on average over the choice of subsystems. This
result, which can be seen as a version of the de Finetti theorem for arbitrary, non-symmetric, states
is proved by information-theoretic methods, in particular the chain rule of mutual information.

[1] EG.S.L. Branddo and A.W. Harrow. Approximation Guarantees for the Quantum Local Hamiltonian
Problem and Limitations for Quantum PCPs. Full paper attached to submission.
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