A multi-prover interactive proof for NEXP sound against entangled provers

Thomas Vidick
Massachusetts Institute of Technology

Joint work with Tsuyoshi Ito, NEC Labs

$NEXP \subseteq MIP*$

Thomas Vidick
Massachusetts Institute of Technology

Joint work with Tsuyoshi Ito, NEC Labs

A multi-prover interactive proof for NEXP sound against entangled provers

Thomas Vidick
Massachusetts Institute of Technology

Joint work with Tsuyoshi Ito, NEC Labs

Entanglement as a resource [PR'98]

Goal: minimize weirdness of entanglement operational characterization of strengths & limitations

- Information theory (LOCC)
 (Chitambar, Monday; Li, Tuesday)
- Quantum foundations (Palazuelos, Monday)
- Device-independent cryptography (Colbeck; V., Wednesday)
- Testing of quantum systems (Reichardt, Monday)
- Condensed-matter physics
 (Schuch, Thursday; Brandao; Landau, Friday)

The typical scenario

- Two or more quantum mechanical systems
 - Implicitly known(e.g. many-body Hamiltonian)
 - Partially characterized (e.g. bounded dimension)
 - Completely unknown(e.g. adversarial system in crypto)

- Local measurements on each system
 - Can be known (e.g. measure energy; tomography)
 - Or not (device-independent crypto; testing;
 Bell inequality violations)
- User interacts and collects statistics
 - Given system description, predict statistics?
 - Given observed statistics, reverse-engineer system ??

Multiplayer games

Model interaction of classical "referee" with quantum "players"

- Referee asks questions; players answer
- Referee decides to accept/reject

 $\omega \uparrow * (G) := max. prob. acceptance$ optimize over *all states* and *all measurements*

- Basic question: given game, what is the maximum probability of acceptance?
 - Given Bell inequality, what is the largest possible violation?

Ex: "CHSH game": random questions $x,y \in \{0,1\}$; check answers $u \oplus v - x \cap y$. $w \cap x \in (G) \approx 0.85...$

– Does there exist a tripartite entangled state satisfying certain constraints?

• Meta question: What is the complexity of computing $\omega T * (G)$?

The complexity of entangled games

Given game G, how hard is it to compute $\omega \uparrow * (G)$?

- Sounds pretty hard...
 - Optimize over all states and all measurements (no a priori dimension bound!)
 - Years of experience have not brought many algorithms
 (max. violation of //3322 inequality only known to 7 digits; tripartite setting seems out of reach)

```
But  \begin{cases} \langle I_{3322} \rangle := -\langle A_2 \rangle - \langle B_1 \rangle - 2\langle B_2 \rangle + \langle A_1 B_1 \rangle \\ + \langle A_1 B_2 \rangle + \langle A_2 B_1 \rangle + \langle A_2 B_2 \rangle - \langle A_1 B_3 \rangle \\ + \langle A_2 B_3 \rangle - \langle A_3 B_1 \rangle + \langle A_3 B_2 \rangle \end{cases}   ayers, 2 bit-answers)
```

- _ (and vice-versa) tion inequalities): exact algorithm SDP-based
- [CJPP;RV'12] player quantum XOR games: approximation algorithm, SDP-b
- [KRT'10] Unique games: approximation algorithm, SDP-base max $\operatorname{Tr}(A \downarrow 0 \cdot X)$
- [PNA;DLTW'09] General 1-round games: hierarchy of SDPs, | s.t. $\text{Tr}(A \downarrow i \cdot X) = b \downarrow i$
- [Pre'07;Ito'12] Linear program for no-signaling strategies
- Main result: no constant-factor approximation algorithm for $\omega 1*$

(unless NP \subseteq DTIME(2 \uparrow polylog n))

Showing hardness: interactive proof systems

• Let L be a "hard" language (e.g. 3-SAT), φ an instance (formula)

MIP* = {
$$L$$
 s.t. $\exists x \rightarrow G \downarrow x$ computable in time poly($|\varphi|$) }

!! Protocol
$$G \downarrow X$$
, input size = $|X| \approx$ size(circuit for $R \downarrow X$) Game G , input size = $|Q||A|$

Some known results

MIP

- NEXP \subseteq MIP [BFL'91]
- MIP \subseteq NEXP [Folklore]
- Restricted classes:
 - MIP = MIP(2 provers, 1 round, const. answer length)
 - \bigcirc MIP = NEXP [Has'01]

MIP^{ns} (no-signaling strategies)

• MIP^{ns} \subseteq EXP [Pre'07] (LP formulation)

MIP*

- MIP(1 prover)=PSPACE ⊆
 MIP*
- MIP* ⊆ ??
- MIP* ⊆ PSPACE
 [CHTW'04,Weh'06]
 (Efficient algorithm follows from semidefinite programming)
- MIP* = MIP*(1 round) [Ito'12]
- Number of provers?

• MIPns (2 1) C PSPΔCF [tto/12]

NEXP ⊆ MIP*: entanglement does not weaken the power of multi-prover interactive proofs

Thm: Every language in NEXP has a 3-prover, poly-round proof system sound against entangled provers

- Constant-factor NP hardness for $\omega \hat{1} * (G)$ in 3-player, poly-round games (under quasi-polynomial reductions)
- Can reduce to 4-prover, 1-round, factor (1+1/polylog(|Q|)) (using [Ito'12])
- Proof based on [BFL'91] protocol showing NEXP ⊆ MIP
 - poly-round sum-check test with one of the provers [LFKN]
 - single-round multilinearity test with three provers
- Key point: soundness of multilinearity test against entangled provers
 - Show test "immune" to collusion from entanglement

Using multiple provers

• Given a system of linear equations over $\mathbb{F} / 2 = \{0,1\}$

```
(E \downarrow 1): u \downarrow 1 + u \downarrow 2 + u \downarrow 3 = 0 (E \downarrow 4): u \downarrow 1 + u \downarrow 4 + u \downarrow 7 = 0 (E \downarrow 2): u \downarrow 4 + u \downarrow 5 + u \downarrow 6 = 0 (E \downarrow 5): u \downarrow 2 + u \downarrow 5 + u \downarrow 8 = 0 (E \downarrow 3): u \downarrow 7 + u \downarrow 8 + u \downarrow 9 = 1 (E \downarrow 6): u \downarrow 3 + u \downarrow 6 + u \downarrow 9 = 0
```

- Is there an assignment satisfying most equations?
- Idea 1: ask for best solution $(u \downarrow 1, u \downarrow 2, ..., u \downarrow 9)$
 - Works, but lots of communication prover → referee
 - Goal = check for existence of good solution... no need to see it!
- Idea 2: Suppose we knew provers: $(x \downarrow 1, ..., x \downarrow 9) \mapsto u \cdot x = u \downarrow 1 \ x \downarrow 1 + \cdots u \downarrow 9 \ x \downarrow 9$ (some u, most x)

Using multiple provers

• Given a system of linear equations over $\mathbb{F} / 2 = \{0,1\}$

```
(E \downarrow 1): u \downarrow 1 + u \downarrow 2 + u \downarrow 3 = 0 (E \downarrow 4): u \downarrow 1 + u \downarrow 4 + u \downarrow 7 = 0 (E \downarrow 2): u \downarrow 4 + u \downarrow 5 + u \downarrow 6 = 0 (E \downarrow 5): u \downarrow 2 + u \downarrow 5 + u \downarrow 8 = 0 (E \downarrow 3): u \downarrow 7 + u \downarrow 8 + u \downarrow 9 = 1 (E \downarrow 6): u \downarrow 3 + u \downarrow 6 + u \downarrow 9 = 0
```

Idea 2: Suppose we knew provers: $(x \downarrow 1, ..., x \downarrow 9) \mapsto u \downarrow 1 \ x \downarrow 1 + \cdots u \downarrow 9 \ \text{most } x)$

- Referee can check satisfiability without seeing solution!
- Catch: how do we check provers: $(x \downarrow 1, ..., x \downarrow 9) \mapsto u \cdot x$ (for unknown u!)

The Blum-Luby-Rubinfeld linearity test

• Three provers, apply same function $f: \mathbb{F} / 2 \mathcal{I} n \to \mathbb{F} / 2$

Theorem (BLR). Suppose provers succeed w.p. $1-\epsilon$.

Then $\exists u \text{ s.t. } f(x) = u \cdot x \text{ for at least } 1 - 6\epsilon \text{ fraction of } x$

- *Proof.* (1) Success $1-\epsilon \Rightarrow \exists u, |f(u)| \ge 1-2\epsilon$.
 - (2) f and $u \cdot x$ agree on all but ϵ fraction of x.

The entangled-prover linearity test

• To answer $x \in \mathbb{F} / 2 \, {\it ln}$, prover measures $|\Psi\rangle$ using $\{A/x \, {\it ln}\}$, $A/x \, {\it ln}\}$

$$pa,b,cx,y,z = \langle \Psi | A \downarrow x \uparrow a \otimes A \downarrow y \uparrow b \otimes A \downarrow z \uparrow c | \Psi \rangle$$

Lemma. Suppose provers succeed w.p. $1-\epsilon$.
Then \exists i.t. provers are *ndistinguishable* from:

answer x with $u \cdot x$

→ .::::: 1

The entangled-prover linearity test

```
Lemma. Suppose provers succeed w.p. 1-\epsilon.
Then \exists \{M \uparrow u\} s.t. provers are \sqrt{\epsilon}-indistinguishable from:
(i) measure using \{M \uparrow u\}, get same u w.h.p.
(ii) answer x with u \cdot x
```

- $\{M \uparrow u\}$ independent of x: could measure before game starts
 - → We identified a *basis* in which the provers are *classical*
- $\{M \uparrow u\}$ easy to define! $M \uparrow u = |A(u)| / \uparrow 2 = |E \downarrow x [(-1) \uparrow u \cdot x A \downarrow x]$
- Work is in relating new $\{M \uparrow u\}$ -provers to original $\{A \downarrow x \uparrow a\}$ -provers
- Indistinguishable?
 - Need strong enough notion to extend to bigger proof system
 - Cannot hope for too much (e.g. operator norm)
 - − We use *consistency*: $E \downarrow x \sum u, a$: $u \cdot x \neq a \uparrow$ $(\Psi \mid A \downarrow x \uparrow a \otimes M \uparrow u \otimes Id \mid \Psi)$

Summary

- Approximating the entangled value $\omega \mathcal{I} * (G)$ of a multiplayer game is computationally hard: MIP = NEXP \subseteq MIP*
- Proof: linearity/multilinearity tests are "entanglement-robust"

Questions

- What is the importance of the number of provers?
 - What is the complexity of 2-prover MIP?
- Constant answer size, constant rounds, constant soundness?
 - Would give some analogue of classical PCP theorem [V., in preparation]
- Is there a more direct argument? (de Finetti theorems?)
- Use of linearity/multilinearity tests in other settings
 - Soundness against entangled players should be useful elsewhere

Thank you!

Financial support from

The multilinearity test

- Tests that $f: \mathbb{F} \downarrow m \uparrow n \to \mathbb{F} \downarrow m$ is linear in each variable
 - n = 2: f(x,y) = axy + bx + cy + d
- Test: pick a coordinate $i \in [n]$ and check linearity in i-th direction
- Analysis: by induction
 - Reconstruct linear approximations $f(x,y) \approx \ell \downarrow y(x)$ for every fixed y
 - Interpolate to recover $f(x,y) \approx bilin(x,y)$
- Error blows up: key step of ``self-correction''
 - -Tbe வள்ளு தியுற்ற கூற்ற வர்கள் இது நடிக்கி $1-\epsilon$ in ML-test Then $\exists \{M \uparrow g\}$ s.t. provers are $(\epsilon \uparrow c \cdot n \uparrow d + n \uparrow e / m)$ —indist. from:
 - (i) measure using $\{M \uparrow g\}$, get same u w.h.p.
 - (ii) answer x with g(x)