Quantum Algorithms for Quantum Field Theories

Stephen Jordan

Joint work with Keith Lee John Preskill

Science, 336:1130 (2012)

Jan 24, 2012

The full description of quantum mechanics for a large system with R particles has too many variables. It cannot be simulated with a normal computer with a number of elements proportional to R.

-Richard Feynman, 1982

An n-bit integer can be factored on a quantum computer in $\mathcal{O}(n^2)$ time.

-Peter Shor, 1994

The full description of quantum mechanics for a large system with R particles has too many variables. It cannot be simulated with a normal computer with a number of elements proportional to R.

-Richard Feynman, 1982

An n-bit integer can be factored on a quantum computer in $\mathcal{O}(n^2)$ time.

-Peter Shor, 1994

Are there any systems that remain hard to simulate even with quantum computers?

Quantum Simulation

Condensed-matter lattice models:

```
[Lloyd, 1996]
```

[Abrams, Lloyd, 1997]

[Berry, Childs, 2012]

Many-particle Schrödinger and Dirac Equations:

[Meyer, 1996]

[Zalka, 1998]

[Taylor, Boghosian, 1998]

[Kassal, S.J., Love, Mohseni, Aspuru-Guzik, 2008]

Quantum Field Theory

- Much is known about using quantum computers to simulate quantum systems.
- Why might QFT be different?
 - Field has infinitely many degrees of freedom
 - Relativistic
 - Particle number not conserved
 - Formalism looks different

What is the computational power of our universe?

When do we need QFT?

Nuclear Physics

Cosmic Rays

Accelerator Experiments

→Whenever quantum mechanical and relativistic effects are both significant.

Classical Algorithms

Feynman diagrams

Break down at strong coupling or high precision

Lattice methods

Cannot calculate scattering amplitudes

A QFT Computational Problem

Input: a list of momenta of incoming particles

Output: a list of momenta of outgoing particles

I will present a polynomial-time quantum algorithms to compute scattering probabilities in the ϕ^4 and Gross-Neveu models with nonzero mass

These are simple models that illustrates some of the main difficulties in simulating a QFT:

- Discretizing spacetime
- Preparing initial states

ϕ^4 -theory

Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$

For quantum simulation we prefer Hamiltonian formulation (equivalent)

$$H = \int d^dx \left[\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 + \lambda \phi^4 \right]$$

$$[\phi(x), \pi(y)] = i\delta^{(d)}(x - y)$$

Quantum Fields

A classical field is described by its value at every point in space.

$$E(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

A quantum field is a superposition of classical field configurations.

$$|\Psi\rangle = \int \mathcal{D}[E]\Psi[E] |E\rangle$$

A configuration of the field is a list of field values, one for each lattice site.

A quantum field can be in a superposition of different field configurations.

$$\frac{1}{\sqrt{2}}$$

Particles Emerge from Fields

Particles of different energy are different resonant excitations of the field.

Lattice cutoff

Continuum QFT = limit of a sequence of theories on successively finer lattices

Lattice cutoff

Continuum QFT = limit of a sequence of theories on successively finer lattices

m and λ are functions of lattice spacing!

Discretization Errors

- Renormalization of m and λ make discretization tricky to analyze
- In ϕ^4 -theory, in d=1,2,3, discretization errors scale as a^2

$$=\frac{(-i\lambda_{0})^{2}}{6}\iint \frac{d^{D}k}{(2\pi)^{D}} \frac{d^{D}q}{(2\pi)^{D}} \frac{i}{(k^{0})^{2} - \sum_{i} \frac{4}{a^{2}} \sin^{2}\left(\frac{ak^{i}}{2}\right) - m^{2}} \frac{i}{(q^{0})^{2} - \sum_{i} \frac{4}{a^{2}} \sin^{2}\left(\frac{aq^{i}}{2}\right) - m^{2}} \times \frac{i}{(p^{0} + k^{0} + q^{0})^{2} - \sum_{i} \frac{4}{a^{2}} \sin^{2}\left(\frac{a(p^{i} + k^{i} + q^{i})}{2}\right) - m^{2}}$$

$$= \frac{i\lambda_{0}^{2}}{3} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx \, dy \, dz \, \delta(x + y + z - 1) \iint \frac{d^{D}k}{(2\pi)^{D}} \frac{d^{D}q}{(2\pi)^{D}} \frac{1}{\mathsf{D}^{3}},$$

$$(208)$$

...it's complicated

$$H = \frac{1}{2} \sum_{x \in \Omega} a^d \left[\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 + \lambda \phi^4 \right]$$

Coarse grain

$$H_{\text{eff}} = \frac{1}{2} \sum_{x \in \Omega'} (2a)^d \left[\pi^2 + (\nabla' \phi)^2 + m_{\text{eff}}^2 \phi^2 + \lambda_{\text{eff}} \phi^4 + g \phi^6 + \dots \right]$$

Simulation converges as a^2

Condensed Matter

There is a fundamental lattice spacing.

But:

We may save qubits by simulating a coarse-grained theory.

After imposing a spatial lattice we have a many-body quantum system with a local Hamiltonian

Simulating the time evolution in polynomial time is a solved problem

Standard methods scale as N^2 . We can do N.

- Discretizing spacetime
- Preparing initial states

With particle interactions turned off, the model is exactly solvable.

- I. Prepare non-interacting vacuum (Gaussian)
- 2. Prepare wavepackets of the non-interacting theory
- 3. Adiabatically turn on interactions
- 4. Scatter
- 5. Adiabatically return to non-interacting theory to make measurements

Adiabatically Turn on Interaction

$$H(s) = \sum_{x \in \Omega} \left[\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 + s\lambda \phi^4 \right]$$

Use standard techniques to simulate H(s) with s slowly varying from 0 to 1

This almost works....

During the slow time evolution

The wavepackets propagate and broaden.

Solution: intersperse backward time evolutions with time-independent Hamiltonians

This winds back the dynamical phase on each eigenstate, without undoing the adiabatic change of eigenbasis

Strong Coupling

 ϕ^4 -theory in I+I and 2+I dimensions has a quantum phase transition in which the $\phi \to -\phi$ symmetry is spontaneously broken

Near the phase transition perturbation theory fails and the gap vanishes.

$$m_{\text{phys}} \sim (\lambda_c - \lambda_0)^{\nu}$$
 $\nu = \begin{cases} 1 & d = 1 \\ 0.63... & d = 2 \end{cases}$

Complexity

Weak Coupling:

d = 1	$(1/\epsilon)^{1.5}$
d=2	$(1/\epsilon)^{2.376}$
d=3	$(1/\epsilon)^{5.5}$

Strong Coupling:

	$\lambda_c - \lambda_0$	p	$n_{ m out}$
d = 1	$\left(\frac{1}{\lambda_c - \lambda_0}\right)^9$	p^4	$n_{ m out}^5$
d=2	$\left(\frac{1}{\lambda_c - \lambda_0}\right)^{6.3}$	p^6	$n_{ m out}^{7.128}$

Fermions:

- Fermion doubling problem
- Free vacuum different from Bosonic case

Gross-Neveu:

$$H = \int dx \left[\sum_{j=1}^{N} \bar{\psi}_j \left(m_0 - i\gamma^1 \frac{d}{dx} \right) \psi_j + \frac{g^2}{2} \left(\sum_{j=1}^{N} \bar{\psi}_j \psi_j \right)^2 \right]$$

Fermion Doubling Problem

$$\frac{d\psi}{dx} \to \frac{\psi(x+a) - \psi(x-a)}{2a}$$

$$\sqrt{p^2 + m^2} \to \sqrt{\sin^2 p + m^2}$$

Wilson Term

$$H \to H - \frac{r}{2a} \sum_{x} \bar{\psi} (\psi(x+a) - 2\psi(x) + \psi(x-a))$$

Preparing Fermionic Vacuum

$$H = \sum_{x} \bar{\psi}(x) m \psi(x)$$

Adiabatic

$$H = \sum_{x} \bar{\psi}(x) \left(m + \frac{d}{dx} \right) \psi(x)$$

Adiabatic

$$H = \sum_{x} \bar{\psi}(x) \left(m + \frac{d}{dx} \right) \psi(x) + \frac{g^2}{2} \left(\bar{\psi}(x) \psi(x) \right)^2$$

Eventual goal:

Simulate the standard model in polynomial time with quantum circuits.

Solved problems:

 ϕ^4 -theory [Science, 336:1130 (2012)] Gross-Neveu [S.J., Lee, Preskill, in preparation]

Open problems:

gauge symmetries, massless particles, spontaneous symmetry breaking, bound states, confinement, chiral fermions

Analog Simulation

 No gates: just implement a Hamiltonian and let it time-evolve

Current experiments do this!

Broader Context

What I'm trying to do is get you people who think about computer simulation to see if you can't invent a different point of view than the physicists have.

-Richard Feynman, 1981

In thinking and trying out ideas about "what is a field theory" I found it very helpful to demand that a correctly formulated field theory should be soluble by computer... It was clear, in the '60s, that no such computing power was available in practice.

-Kenneth Wilson, 1982

Conclusion

Quantum computers can simulate scattering in ϕ^4 -theory and the Gross-Neveu model.

There are many exciting prospects for quantum computation and quantum field theory to contribute to each other's progress.

I thank my collaborators:

Thank you for your attention.