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Entanglement and entanglement measures

Entanglement is an important concept and resource. It is

the most outstanding non-classical feature of compound
states that can't be expressed as mixture of product states.

Entanglement measures: To understand entanglement, we
need entanglement measures with good properties.

- operational ones: E_, E,, K, ..
- abstract ones: E,,E, E_,E, ..
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Squashed entanglement and

relative entropy of entanglement

= Squashed entanglement (Tucci '99, '02; Christandl & Winter '04)
Eq(pap) := inf {;I(A; B|E), : pagg is an extension of pAB} :
where I(A; B|E), is the quantum conditional mutual information of pspg,
I(A; BIE), := S(paEe) + S(pBE) — S(paBE) — S(pPE)

- It has many nice properties (monogamy, additivity, etc) and operational
meaning (Koashi & Winter '04; Christandl & Winter '04 ; Devetak & Yard '08)

= Relative entropy of entanglement (Vedral et al '97, '98)

Er(pap) = min  D(pllo) With D(p|lo) = Tr(p(logp — log 7))

- Regularized version admits operational meaning. (Brandao & Plenio '08, '10)

EX(pap) = lim 1E,.(p9%)
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Post-measurement relative entropy of entanglement, with
respect to restricted measurement classes (Piani '09)

Erm(paB) = e“%lEP EIRAD(M(@AB)”M(UAB))
oEs €

Here M is a class of measurement, such as
LO, 1-LOCC, LOCC, SEP and PPT.



Outline

e Results:

1. Monogamy relation for relative entropy of entanglement
2. Commensurate lower bound for squashed entanglement

3. Properties of £, m(pagr) : asymptotic continuity and
evaluation on maximally entangled states and pure states.

4. Comparisons between entanglement measures.

e Proofs (of 1 and 2)



Monogamy relation for relative entropy of
entanglement

For an entanglement measure f, one would expect the monogamy

f(p1:23) = f(p12) + f(p1:3)

This is true for Es, but fails for £, (along with most other EMs).
Counterexample: anti-symmetric states! (Christandl, Schuch, Winter '10)

Properly weakened monogamy relation:

Theorem 1 For every tripartite quantum state PABE \
we have
Er(pB:ag) > Eri1occ(par) + E°(pBE),

EX(pB.aE) 2 E?,?-LOCC(PAB) + EX(pBE).
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Commensurate lower bound for
squashed entanglement

= Squashed entanglement is faithful. (Brandao, Christandl, Yard '10)

[ E. (o) >0 < POpp entangled }

The main result of the proof is the following 1-LOCC trace-norm

bound:
1 2
E > min — 0 | -
sq(paB) = T2 o, lpaB — 0Bl 10cC
where

1paB — 04B|110cc = SUPperr0cc IM(paB) — M(oaB)|



Commensurate lower bound for
squashed entanglement

= We provide a 1-LOCC relative entropy lower bound for Esq

4 N
Theorem 2 For every quantum state PAB, we have
1 1
Esq¢(paB) 2 sE 1 Locc(paB) = s Er1Locc(pas).
- 2 2 /

= Strong subadditivity: S(par) +S(psE) = S(papr) = S(pE) >0 (Lieb, Ruskai '73)

Corollary (Refinement of strong subadditivity):
S(pae) + S(pE) — S(pase) — S(pr) = Erirocc(pas)-

© Epp. = inf  sup D
(note: Ertocclpas)i= inf sup (Mlpap)Mloap)) )



Commensurate lower bound for
squashed entanglement

About the new bound:

= Recovering the 1-LOCC trace-norm bound:
applying Pinsker’s inequality D(p|lo) > Qllml\p —o|7 ,
we are able to recover the 1-LOCC trace-norm bound

(with slightly better constant factor) :

1 2
E > min — ' -
sq(pAB) > o, i lpaB — 7 aBlli1occ

= It is asymptotically normalized: for maximally entangled
state ®, and pure state V4B ,

Er11occ(Pg)=log(d+1) -1
EX 1 occ(Pap)= S(Trp )



Properties of E.m(paB)

= Asymptotic continuity

/Proposition 3 Let p, p’ be two states of dimension k\
with|[p — ¢'|lm < e < <. Then

Gk
|Exm(p) — Erm(p))| < 2610% —

N /

= Evaluation on maximally entangled states and pure states

@roposition 4 For rank-d maximally entangled state ¢, I
and pure state V4B ,

Er10(®q) = Er110cc(®a) = Errocc(®q) = Ersep(Pa) = Erppr(®g) = log(d +1) -1,

EXo(WaB) = EXqocc(VaB) = E-?iocc(?.f'f’AB) = E-r,.SEP(?.fI/’AB) = E%PT('UL’AB) = S(Trpv).
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Comparisons between entanglement measures

We are mainly interested in two families of entanglement measures:
e Squashed-like measures { Lsq, Lr. FEg,.}

e Er families {E_. E.,, E'}

- Conditional entanglement of mutual information (Yang, Horodecki, Wang '08)
Er(pag) = %iﬂf{[ (AABB'), - 1(A" B'),}  with psapp being an extension of p4p
- C-squashed entanglement (Yang at el '07)

EsqelpaB) = %inf{[ (4;B|E),}, where extension state PABE = Z@-psz ® |_%'><%'|E

- Relatives of relative entropy of entanglement (Piani '09)

Er_(pap) = sup E.11occ(Apag)) s Erolpap) = Errocc(paB)
A€LOCC



Comparisons between entanglement measures

(focusing mainly on regularized versions) al
We obtain:
1. 2EC; . > E7°,
2. 2E; > B, oS R
3. 2Fs = E77, superaddftf?é S
4. E, = Ey. . _subadditive

Previously known ones:

EdSKdgEsqi:EI<EOO gEc;

—_ 5q.C

E®, < EX, < EX faithful

Eg<Kg<EX<E,,



+

Proofs of Theorem 1 and Theorem 2



Quantum hypothesis testing
with one-way LOCC operations

Consider the setting of hypothesis testing
two hypotheses: p5he OF 045

tests allowed: {L,,1—L,} on A*»B"; 1-LOCC implementable
two errors: on(L,) = Te(p®"(1 — Ly)), Bnu(Ly) = Tr(c®" Ly)



Quantum hypothesis testing
with one-way LOCC operations

Q‘@ T \ . .
undisturbed n il undisturbed

= For any 1-LOCC M45=X | there exist 1-LOCC tests {L,,1 — L, }
such that 1y a,(1,) =0,

A Quantum Stein’s Lemma
Jim —=log fn(Ly ) = D(M(p)M(0)) (Hiai, Petz '91)

= Meanwhile, the states p%7, and o5 are kept almost undisturbed!

Gentle Measurement Lemma
(Winter '99)

Note: one-way LOCC measurement (1-LOCC) MA5=X can be replaced by
one side local measurement (1-LM) MAB—=XB



technical lemma

Lemma  For any two states papp and oapg, and any one-way
LOCC measurement MAP=X acting on system AB, with classi-
cal communication from A to B, there exists a sequence of quantum
instruments TA"B"=XB" “which are implementable via local oper-
ations and classical commlmication from A" to B", such that

lim = D(TE (3T (0%8)) = DIM(pap)IM(0a5).

n—oo N
q E™ ®n N _
Jlim. 1T ® 1% (p35E) — PREl, =0,

where T¢ i= Trpn oTA"B"=XB" aud T .= Try o] A"B"=XB",

Note: one-way LOCC measurement (1-LOCC) MmAB—X can be replaced by
one side local measurement (1-LM) MAB—XB



Proof of Theorem 1------
onogamy relation for relative entropy of entanglement

Toshow FE.(pp:ag) > Er,l—LOCC(pAB) + B (pBE)

Proof:

Letop.ap be the nearest separable state to pp. 4E;
Let MAP=X  be an arbitrary one-way LOCC measurement;

Let 72" B" =X 5" he the quantum instruments in the lemma

associated with papg, c4pEg and MAB—=X

E.(pp:ap) = D(papelloape)

1 |
= ;D(P§%E\|0§EE)

. . 1 " T
(monotonicity) > ED(’&@IIE e T @ 15" (65 0))



Proof of Theorem 1------
onogamy relation for relative entropy of entanglement

Wri‘te 7:1 & ]]_ (.‘()%EE Z?:” Pin |t' ir?-)(?-'n |‘\— & p?gn En

L i —" :'H'.
To @ 1% (698E) = 20 dinlin)(in]™ @ 0 pn

— | | ‘
= DT, SPAIT (055) + - Zp-atnD(PfﬁnEnHGfé’“nEn)
| | . 1
(joint convexity) > —D(Ty ()T (055) + — DT @ 1% (p550) | Zpanaé‘ngn
1 T C 1 T
(1-LOCC of Tn) > LD IT (0550 + B (T 0 17 (553,

(lemma & asym. cont.) == D(M(pag)|M(car)) + EX(psE).

Since M is arbitrary, we have

Er(ppap) = sup  D(M(pag)|Ml(oas)) + EZ(pBE)
Mel-LOCC

> Erirocc(par) + EXX(pBE).



Proof of Theorem 2------
Commensurate lower bound for squashed entanglement

1 1

To show Es(pap) > §E;ﬁ-Locc(PAB) > §Er,1—LOCC(PAB)
Proof:
(Theorem 1) A
EX(pp:ap) 2 EliLocc(pap) + EX(pBE)
(Brandao, Christandl, Yard '11, Lemma 1)
I(A;B|E), > EX(pB.ar) — E7(pBE) )

1 1

> Eoy(pap) > 5Eritocclpan) 2 5 Eritocc(pap)



Last remark

E,.(pB:ag) > Eri1occ(pap) + EX°(pBE)
EX(pp:ap) > EX4occ(pa) + EX (pBE)

1 1
Esq(paB) > ) rrlocc(paB) = QErl Locc(paB)

One-way LOCC measurement can be replaced by
one-side local measurement, which iIs a measurement
on system A and an identity operation on system B.

Inspired by the results of (Brandao & Harrow '12)



Open questions

= Applications of our results?

= Faithfulness of multipartite squashed entanglement?



Thank you!



