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Background: solving NP by LP?

Famous P-problem: linear programming (Khachian’79)

Famous NP-hard problem: traveling salesman problem

A polynomial-size LP for TSP would show P = NP

Swart’86–87 claimed to have found such LPs

Yannakakis’88: symmetric LPs for TSP are exponential

Swart’s LPs were symmetric, so they couldn’t work

20-year open problem: what about non-symmetric LP?

Sometimes non-symmetry helps a lot! (Kaibel et al’10)

Yannakakis, May 2011: “I believe in fact that it should be
possible to prove that there is no polynomial-size formulation
for the TSP polytope or any other NP-hard problem, although
of course showing this remains a challenging task”
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in higher dimension, of size O(log n)

Extended formulation of P :
polytope Q ⊆ R

d+k s.t. P = {x | ∃ y s.t. (x, y) ∈ Q}

Optimizing over P reduces to optimizing over Q.
If Q has small size, this can be done efficiently!

How small can size(Q) be? Extension complexity:
xc(P ) = min{size(Q) | Q is an EF of P}

Our goal: strong lower bounds on xc(P ) for interesting P
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PTSP = conv{χF ∈ {0, 1}(
n

2
) | F ⊆ En is a tour of Kn}

Our main result: xc(PTSP) ≥ 2Ω(
√

n)

Hence every LP for TSP based on extended formulation
of TSP-polytope needs exponential time

This rules out a lot of potential algorithms

Roadmap for the proof:

2n lower bound on xc of correlation polytope
[inspired by quantum communication complexity!]

⇓ gadget-based reduction

2
√

n lower bound for TSP-polytope
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Slack matrix S of a polytope P = conv(V )
with inequalities {Aix ≤ bi} and points V = {vj}:

Sij = bi − Aivj

NB: every entry is nonnegative; S is not unique

Positive factorization S =
r

∑

i=1

uiv
T
i , vectors ui, vi ≥ 0

Nonnegative rank: rank+(S) = min such r

Yannakakis’88: xc(P ) = rank+(S)

rank+(S) has many connections with
communication complexity
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“Computing a matrix M in expectation”:
Alice gets input a ∈ {0, 1}n, Bob gets input b ∈ {0, 1}n,
Bob should output a nonnegative z such that E[z] = Mab

Alice: Bob:
input a input b

message 1

message 2

message 3

. . .

✲

✛

✲

❄

output z ≥ 0

Faenza et al.’11:
classical communication required = log rank+(M) bits

Can we find a matrix M where
quantum communication is exponentially smaller?
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Mab = (1 − aT b)2 NB: Mab = 0 iff aT b = 1

Claim: 2Ω(n) rectangles needed to cover support of M

Proof (informally): Razborov showed that a rectangle
that doesn’t contain (a, b)-pairs with aT b = 1, can cover
only an exponentially small fraction of disjoint (a, b).
⇒ 2Ω(n) rectangles needed to cover all disjoint (a, b)

If M =
∑r

i=1 uiv
T
i , ui, vi ≥ 0, each uiv

T
i gives a non-zero

rectangle ⇒ r ≥ 2Ω(n) ⇒ Ω(n) classical communication

There is a O(log n)-qubit protocol: Alice sends (a, 1),
Bob measures (b,−1) (ignoring normalization)
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The following constraints hold (one for each a ∈ {0, 1}n):
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[

(2diag(a) − aaT )x
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The following constraints hold (one for each a ∈ {0, 1}n):
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[
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Slack of this a-constraint w.r.t. vertex bbT :
Sab = 1 − Tr

[
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7
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Consequences for other polytopes

Via classical reductions we can prove lower bounds on
the extension complexity of other polytopes:

≥ 2n for the CUT polytope

≥ 2
√

n for TSP polytope

≥ 2
√

n for Stable Set polytope for specific graph

This refutes all P=NP “proofs” à la Swart
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PP is closed under intersection,
Permanent is #P-complete (Aaronson)
Proof systems for lattice-problems (Aharonov,Regev)
Proof of Varopoulos conjecture (BBLV)
Efficient algorithms ⇒ low-degree polynomials

Lower bounds for combinatorial polytopes, inspired by quantum communication complexity – p. 12/13



Summary

Lower bounds for combinatorial polytopes, inspired by quantum communication complexity – p. 13/13



Summary

We studied the extension complexity of polytopes

Lower bounds for combinatorial polytopes, inspired by quantum communication complexity – p. 13/13



Summary

We studied the extension complexity of polytopes

Showed exponential lower bounds on the extension
complexities of the correlation, cut, stable set, and
TSP polytopes, even for non-symmetric extensions.
This solves a 20-year old problem of Yannakakis,
inspired by quantum communication complexity

Lower bounds for combinatorial polytopes, inspired by quantum communication complexity – p. 13/13



Summary

We studied the extension complexity of polytopes

Showed exponential lower bounds on the extension
complexities of the correlation, cut, stable set, and
TSP polytopes, even for non-symmetric extensions.
This solves a 20-year old problem of Yannakakis,
inspired by quantum communication complexity

Further research:
Lower bound for the matching polytope?
(Yannakakis: exponential LB for symmetric)

Lower bounds for combinatorial polytopes, inspired by quantum communication complexity – p. 13/13



Summary

We studied the extension complexity of polytopes

Showed exponential lower bounds on the extension
complexities of the correlation, cut, stable set, and
TSP polytopes, even for non-symmetric extensions.
This solves a 20-year old problem of Yannakakis,
inspired by quantum communication complexity

Further research:
Lower bound for the matching polytope?
(Yannakakis: exponential LB for symmetric)
Lower bounds on positive semidefinite extensions?
[Not shown here: this is closely connected to
quantum communication complexity]

Lower bounds for combinatorial polytopes, inspired by quantum communication complexity – p. 13/13



Summary

We studied the extension complexity of polytopes

Showed exponential lower bounds on the extension
complexities of the correlation, cut, stable set, and
TSP polytopes, even for non-symmetric extensions.
This solves a 20-year old problem of Yannakakis,
inspired by quantum communication complexity

Further research:
Lower bound for the matching polytope?
(Yannakakis: exponential LB for symmetric)
Lower bounds on positive semidefinite extensions?
[Not shown here: this is closely connected to
quantum communication complexity]
Lower bounds for approximation? [BFPS’12,BM’12]
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