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- Is the intuition correct? 
 

- Can we make it precise?  
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Let                                      be a n-qubit quantum state 
 
 
 
 
 
 

Correlation Function: 
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Exponential Decay of Correlations 
 

Exponential Decay of Correlations: There is ξ > 0 s.t. for all 
cuts X, Y, Z with |Y| = l  
 Cor(X :Z) £ 2-l/x

ξ:  correlation length  

Which states exhibit exponential decay  
of correlations? 

Example: |0, 0, …, 0> has  0-exponential decay of cor. 



Local Hamiltonians 
 H1,2 

Local Hamiltonian:  H = Hk,k+1

k

å

Hk,k+1 

y0 : H y0 = E0 y0
Groundstate:  

Thermal state:  rb := e-bH / Z  

Spectral Gap:  D(H) := E1 -E0



States with Exponential Decay of 
Correlations 

(Araki, Hepp, Ruelle ’62, Fredenhagen ’85) 

Groundstates in relativistic systems 
 

(Araki ‘69)  

Thermal states of 1D local Hamiltonians 
 

(Hastings ’04, Nachtergaele, Sims ‘06, Koma ‘06)  

Groudstates of gapped of local Hamiltonians         
Analytic proof (Lieb-Robinson bounds)  
 

(Araronov, Arad, Landau, Vazirani ‘10)  

Groudstates of gapped of frustration-free local  
Hamiltonians  

Combinatorial Proof (Detectability Lemma)  
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Exponential Decay of 
Correlations… 

… intuitively suggests the state is simple,  
in a sense similar to a product state.  

 

Can we make this rigorous?  
 
 

But first, are there other ways to impose simplicity in 
quantum states? 

                      
 



Area Law in 1D 
 

Let                                      be a n-qubit quantum state 
 
 
 
 

 

Entanglement Entropy: 
 

 

Area Law: For all partitions of the chain (X, Y) 

S(rX ) £ const
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Area Law in 1D 
 Area Law: For all partitions of the chain (X, Y) 

S(rX ) £ const

For the majority of quantum states: 
 
Area Law puts severe constraints on the amount of 
entanglement of the state 
 

S(rX ) » size(X) = r



Quantifying Entanglement  
 
 
Sometimes entanglement entropy is not the most convenient 
measure: 

 
      Max-entropy: 
 
Smooth max-entropy: 
 
 
 
Smooth max-entropy gives the minimum number of qubits 
needed to store an ε-approx. of ρ  

Smax(r) := logrank(r)

Smax

e (r) := min
re ÎBe (r )

Smax(re )

Be (r) := s : r -s
1
£e{ }



States that satisfy Area Law 

Intuition -  based on concrete examples (XY model, harmomic 

systems, etc.) and general non-rigorous arguments: 
 
 
 

 

 

  Non-critical                Gapped                     S(X) ≤ O(Area(X)) 
 

 

     Critical                  Non-gapped            S(X) ≤  O(Area(X)log(n))  

    Model                 Spectral Gap                        Area Law 



States that satisfy Area Law 

 (Aharonov et al ’07; Irani  ’09, Irani, Gottesman ‘09) 

Groundstates 1D Ham. with volume law          S(X) ≥ Ω(vol(X))  
Connection to QMA-hardness 
 

(Hastings ‘07)  

Groundstates 1D gapped local Ham.:                  S(X) ≤ 2O(1/Δ)    
Analytical Proof: Lieb-Robinson bounds, etc…  
 

 

(Wolf, Verstraete, Hastings, Cirac ‘07)  

Thermal states of local Ham.:                       I(X:Y) ≤ O(Area(X)/β) 
Simple (and beautiful!) proof from  
Jaynes’ principle 
 

(Arad, Kitaev, Landau, Vazirani ‘12)                                    S(X) ≤ (1/Δ)O(1)  

Groundstates 1D Local Ham.  
Combinatorial Proof (Chebyshev polynomials, etc…)  
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Area Law and MPS 
 

 
 
 
 
 

           
 

 
 

 
 
 

     
 
 
 
                                                  

In 1D: Area Law                  State has an efficient classical  
                                             description MPS with D = poly(n)  

y
1,...,n

= ... tr Ai1
[1]...Ain

[n]( ) i1,..., in
in=1

2

å
i1=1

2

å , Aj
[l ] ÎMat(D,D)

Matrix Product State (MPS): 
 
 
 
 

D : bond dimension 

(Vidal 03, Verstraete, Cirac ‘05, Schuch, 
Wolf, Verstraete, Cirac ’07, Hastings ‘07) 

• Only nD2 parameters.  
• Local expectation values computed in poly(D, n) time 
• Variational class of states for powerful DMRG  
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Area Law vs. Decay of Correlations 
 Exponential Decay of Correlations suggests Area Law: 

(Verstraete, Cirac ‘05) 

X Z Y 

l = O(ξ)  

 ξ-EDC   implies                                           
 

                                                                          

rXZ »
2-l/x rX Ä rZ



Area Law vs. Decay of Correlations 
 Exponential Decay of Correlations suggests Area Law: 

(Verstraete, Cirac ‘05) 

X Z Y 

 ξ-EDC   implies                                                 which implies  
 

                                                                         (by Uhlmann’s theorem)   
 

 X is only entangled with Y!  

rXZ »
2-l/x rX Ä rZ

y
XYZ
»

2- l/x U Y1Y2®Y
ÄIXZ( ) p

XY1
u
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Area Law vs. Decay of Correlations 
 Exponential Decay of Correlations suggests Area Law: 

(Verstraete, Cirac ‘05) 

X Z Y 

 ξ-EDC   implies                                                 which implies  
 

                                                                         (by Uhlmann’s theorem)   
 

 X is only entangled with Y!  Alas, the argument is wrong… 
 

 Reason: Quantum Data Hiding states: For random ρXZ w.h.p. 
     

rXZ »
2-l/x rX Ä rZ

y
XYZ
»

2- l/x U Y1Y2®Y
ÄIXZ( ) p

XY1
u

Y2Z

Cor(X : Z)£ 2-W(l ), rXZ - rX ÄrZ 1
= W(1)

l = O(ξ)  
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1. Intuitive explanation is flawed 
 

2.  No-Go for area law from exponential decaying correlations? So 
far that was largely believed to be so (by QI people) 
 

3.  Cop out: data hiding states are unnatural; “physical” states are 
well behaved. 
 

4. We fixed a partition; EDC gives us more…  
 

5. It’s an interesting quantum information problem:  
      How strong is data hiding in quantum states? 



Exponential Decaying Correlations 
Imply Area Law 

 

Thm 1 (B., Horodecki ‘12) If                  has ξ-EDC then for every  
X and m, 
     

y
1,...,n

X Y 

Smax

2-W(m )

(X)£ l0 2O(x log(x )) +m



Exponential Decaying Correlations 
Imply Area Law 

 

Thm 1 (B., Horodecki ‘12) If                  has ξ-EDC then for every  
X and m, 
     

y
1,...,n

Obs1: Implies 
 

Obs2: Only valid in 1D… 
 

Obs3: Reproduces bound of Hastings for GS 1D gapped Ham.,    
            using EDC in such states 

S(X) £ l0 2O(x log(x ))

X Y 

Smax

2-W(m )

(X)£ l0 2O(x log(x )) +m



Efficient Classical Description 
 

(Cor. Thm 1) If                  has ξ-EDC then for every ε>0 there is 
MPS           with poly(n, 1/ε)  bound dim. s.t.  
     

y ye ³1-e

y
1,...,n

States with exponential decaying correlations are simple in a 
precise sense 
 
                                                                                                                

 
 
  

X Y 

ye



Correlations in Q. Computation 
What kind of correlations are necessary for exponential 
speed-ups?  
 

y1 y2
yt

… 

1.      (Vidal ‘03) Must exist t and X = [1,r] s.t. 
 

 

X 

Smax

e (rt,X ) ³ nd



Correlations in Q. Computation 
What kind of correlations are necessary for exponential 
speed-ups?  
 

y1 y2
yt

… 

1.      (Vidal ‘03) Must exist t and X = [1,r] s.t. 
 

2.  (Cor. Thm 1) At some time step state must have long range    
        correlations (at least algebraically decaying)   

          - Quantum Computing happens in “critical phase” 
        - Cannot hide information everywhere 

X 

Smax

e (rt,X ) ³ nd



Random States Have EDC? 

y
XYZ

: Drawn from Haar measure 

X Z Y 

l 

 
w.h.p, if size(X) ≈ size(Z): 
 

and 
 

Small correlations in a fixed partition do not imply area law.  
 
 
 

 

cor(X :Z)£ 2-W(l)

S(X) » S(Z) » n / 2- l



Random States Have EDC? 

y
XYZ

: Drawn from Haar measure 

X Z Y 

l 

 
w.h.p, if size(X) ≈ size(Z): 
 

and                                                   
 

Small correlations in a fixed partition do not imply area law.  
 
 

But we can move the partition freely...      
 

 

cor(X :Z)£ 2-W(l)

S(X) » S(Z) » n / 2- l



Random States Have Big Correl. 
y

XYZ : Drawn from Haar measure 

X Z Y 

l 

Let size(XY) < size(Z). W.h.p.                                                 ,   
 
 

X is decoupled from Y.  
 
 

   
  
 
  

rXY -t X ÄtY 1
£ 2-W(n)

t X :=
I

| X |
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Let size(XY) < size(Z). W.h.p.                                                ,   
 
 

X is decoupled from Y.  
 
 

Extensive entropy, but  
also large correlations: 
 
 

              Maximally entangled state between XZ1.  
   
  
 
  

UZ®Z1Z2
y

XYZ
» F

XZ1

Ä F
YZ2

F
XZ1

:

(Uhlmann’s theorem) 

rXY -t X ÄtY 1
£ 2-W(n)

t X :=
I

| X |



Random States Have Big Correl. 
y

XYZ : Drawn from Haar measure 

X Z Y 

l 

Let size(XY) < size(Z). W.h.p.                                                ,   
 
 

X is decoupled from Y.  
 
 

Extensive entropy, but  
also large correlations: 
 
 

              Maximally entangled state between XZ1.  
   
  Cor(X:Z) ≥ Cor(X:Z1) = Ω(1) >> 2-Ω(n)   : long-range correlations! 
 
 
  

UZ®Z1Z2
y

XYZ
» F

XZ1

Ä F
YZ2

F
XZ1

:

(Uhlmann’s theorem) 

rXY -t X ÄtY 1
£ 2-W(n)

t X :=
I

| X |



Random States Have Big Correl. 
y

XYZ : Drawn from Haar measure 

X Z Y 

l 
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X is decoupled from Y.  
 
 

Extensive entropy, but  
also large correlations: 
 
 

              Maximally entangled state between XZ1.  
   
  Cor(X:Z) ≥ Cor(X:Z1) = Ω(1) >> 2-Ω(n)   : long-range correlations! 
 
 
  

UZ®Z1Z2
y

XYZ
» F

XZ1

Ä F
YZ2

F
XZ1

:

(Uhlmann’s theorem) 

rXY -t X ÄtY 1
£ 2-W(n)

t X :=
I

| X |

It was thought random states were counterexamples to area law 
from EDC.  
 

Not true; reason hints at the idea of the general proof:  
 
We’ll show large entropy leads to large correlations by choosing a  
random measurement that decouples A and B 
 



State Merging 

We apply the state merging protocol to show large entropy 
implies large correlations 
 
 
 
 
 
 
State merging protocol: Given                Alice can distill  
-S(A|B) =  S(B) – S(AB) EPR pairs with Bob by making  
a random measurement with N≈ 2I(A:E)  elements, with  
I(A:E) := S(A) + S(E) – S(AE), and communicating the  
outcome to Bob. (Horodecki, Oppenheim, Winter ‘05)   

 

y
ABC

A B E 
y

ABE



State Merging 

We apply the state merging protocol to show large entropy 
implies large correlations 
 
 
 
 
 
 
State merging protocol: Given                Alice can distill  
-S(A|B) =  S(B) – S(AB) EPR pairs with Bob by making  
a random measurement with N≈ 2I(A:E)  elements, with  
I(A:E) := S(A) + S(E) – S(AE), and communicating the  
outcome to Bob. (Horodecki, Oppenheim, Winter ‘05)   

 

y
ABC

A B E 
y

ABE

Disclaimer: merging only works for                                
 
Let’s cheat for a while and pretend it works for a 
single copy, and later deal with this issue  



State Merging by Decoupling 
State merging protocol works by applying a random 
measurement {Pk} to A in order to decouple it from E: 
 
 
 
 

   log( # of Pk’s )  
 
    # EPR pairs: 
 
 A B E 

y
ABE

y
ABE

j
ABE

µ Pk Ä idBE( ) y
ABE

j
XZ

-t
X

ÄjZ 1
» 0

log X » S(B)-S(AB)

» I(A :E)



What does state merging imply for 
correlations? 
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What does state merging imply for 
correlations? 

 
 
 
 
 
 
 
 

y
ABC

l 

X Y Z 

Cor(X :Z) ³O 2-I (X:Y )( )S(Z) > S(Y ) Þ

      S(Z) – S(XZ) > 0    
    (EPR pair distillation 
 by random measurement) 

Prob. of getting one of the 
2I(X:Y) outcomes in random 

measurement  



Area Law from Subvolume Law 
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Suppose S(Y) < l/(4ξ)       (“subvolume law”)  
Since I(X:Y) < 2S(Y) < l/(2ξ), ξ-EDC implies Cor(X:Z) < 2-l/ξ < 2-I(X:Y) 

 

               Thus:  S(Z) < S(Y)    :   Area Law for Z! 
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               Thus:  S(Z) < S(Y)    :   Area Law for Z! 



< l02O(1/ε)  < l02O(1/ε)  

Saturation Mutual Information 

X 

Lemma (Saturation Mutual Info.) Given a site s, for all l0, ε > 0 
there is a region Y2l := YL,l/2YC,lYR,l/2 of size 2l with 1 < l/l0 < 2O(1/ε) 
at a distance < l02O(1/ε)  from s  s.t. 
 

                                        I(YC,l:YL,l/2YR,l/2) < εl      

Proof: Easy adaptation of result used by Hastings in his area law proof for 
gapped Hamiltonians (based on successive applications of subadditivity) 

s 
YL YC YR 



“It suffices to prove that nearby the boundary of Z there is a 
region of size < l02O(ξ) with entropy < l/(4ξ)” 
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YLYCYRR

R R 



  If                                                    then 

i. From state merging bound:  
 
 
 

 

Cor(YC :R) £ 2-I (YC:YLYR )

< l02O(1/ε)  < l02O(1/ε)  

Getting subvolume law 
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YL YC YR 

S(R) £ S(YLYR )

R := all except YLYCYR :   y
YLYCYRR

R R 
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i. From state merging bound:  
 

 
 

i. From saturation lemma with ε = 1/(4ξ),  
 
 

 

Cor(YC :R) £ 2-I (YC:YLYR )

< l02O(1/ε)  < l02O(1/ε)  

Getting subvolume law 

s 
YL YC YR 

Cor(YC :R) £ 2-l/2x £ 2-I (YC:YLYR )

S(R) £ S(YLYR )

R := all except YLYCYR :   y
YLYCYRR

R R 



iii.                                       implies  
 

 

“It suffices to prove that nearby the boundary of Z there is a 
region of size < l02O(ξ) with entropy < l/(4ξ)” 

< l02O(1/ε)  < l02O(1/ε)  

Getting subvolume law 

X s 
YL YC YR 

S(R) £ S(YLYR )

R := all except BLBCBR :   y BLBCBRR

 S(YC) ≤ S(YC) + S(YLYR) – S(R) = I(YC:YLYR)  
                                                   ≤ l/(4ξ)          (by saturation lemma) 

 
YC gives the region of subvolume entropy! 
 
    



Making it Work 
So far we have cheated, since merging only works for many 
copies of the state. To make the argument rigorous, we use 
single-shot information theory (Renner et al ‘03, …) 

   Single-Shot State Merging  
   (Dupuis, Berta, Wullschleger, Renner ‘10) 

   + New bound on correlations  
      by random measurements 
 

   Saturation max- Mutual Info. 
       Proof much more involved; based on 
    - Quantum substate theorem, 
    - Quantum equipartition property,  
    - Min- and Max-Entropies Calculus 
    - EDC Assumption 

State Merging  

Saturation  
Mutual Info. 
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• CM community didn’t notice either of these minor perturbations  

”EDC implies  Area Law”     stays true!  



Conclusions and Open problems 

1. Can we improve the dependency of entropy with 
correlation length? 

2. Can we prove area law for 2D systems? HARD! 
3. Can we decide if EDC alone is enough for 2D area law? 
4. See arxiv:1206.2947 for more open questions 

• EDC implies Area Law and MPS parametrization in 1D. 
 

• States with EDC are simple – MPS efficient parametrization. 
 

• Proof uses state merging protocol and single-shot 
information theory: Tools from QIT useful to address  

    problem in quantum many-body physics. 
 



Thanks! 


