

QIP 2013
Beijing

towards perfect completeness in

Stephen P. Jordan NIST Gaithersburg

Hirotada Kobayashi NII Tokyo

François Le Gall University of Tokyo

Harumichi Nishimura Nagoya University

- Daniel Nagaj University of Vienna
arXiv: 1111.5306 v 2
Beijing

1 what it means to be really convincing

2 classical witnesses
QCMA $_{1}$

3 a few EPR's
QMA ${ }_{1}^{\text {c.EPR }}$
$\mathrm{QIP}_{1}(2)$

1 The MA protocol

1 The MA protocol

[wooden animals: Imagination Kids Toys]

YES?
 Eager to be convinced.

1 The MA protocol

1 The MA protocol

1 Probabilistic checks

Sometimes reject a genuine proof?

1 Perfect completeness

Never reject a genuine proof?

YES?
 Accept some proof without any doubt.

NO?
Still don't get fooled easily.

YES?

Accept some proof without any doubt.
perfect
completeness

1 The QMA protocol

$\begin{array}{ll}\text { YES? } & \text { Accept a good proof with } p>a . \\ \text { NO? } \quad \text { Probability of accepting } p<b .\end{array}$

1 The QMA protocol: amplification

$\begin{array}{ll}\text { YES? } & \text { Accept a good proof with } p>a . \\ N O ? & \text { Probability of accepting } p<b .\end{array}$

1 The QMA protocol: amplification [Kitaev]

YES? Accept a good proof with $p>a$.
NO? Probability of accepting $p<b$.

1 The QMA protocol: amplification [Mariott-Watrous]

alternating projections P, Q

1, 0, 0, , , 1, 1, 0, $1 \ldots$
Life in a 2D subspace. [Jordan] How many 00 's and 11 's?

1 The QMA protocol: fast amplification [N.-Wocjan-Zhang]

alternating reflections R, S

Together: a rotation. Phase estimation of $R S$.

1 The QMA protocol: fast amplification [N.-Wocjan-Zhang]
alternating reflections R, S

Together: a rotation.
Perfect phase estimation of $R S$?

1 Amplification for MA \& QMA.

amplification

YES? Accept with p almost 1.
NO? Get fooled with small p.

1 Perfect amplification for MA \& QMA?

perfect amplification

YES? Accept a good proof.
NO? Get fooled with small p.

1 Perfect amplification for MA.

perfect classical amplification

$M A=M A_{1}$

[Zachos \& Fürer]

YES? Accept a good proof.
NO? Get fooled with small p.

1 Perfect amplification for QMA?

perfect quantum amplification

QMA_{1}

YES? Accept a good proof.
NO? Get fooled with small p.

An oracle separation of QMA \& QMA_{1}

An oracle separation of QMA \& QMA

a continuous
range of angles

Accept something
Accept everything... without a doubt? [Aaronson '08]

Exact Grover's search

$$
|\phi\rangle=\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}|1\rangle
$$

\square
 Exact quantum rewinding

[J. Watrous]

$$
|\phi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

Exact quantum rewinding

$$
|\phi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

test acceptance reflect about $|\phi\rangle$ test acceptance

Exact quantum rewinding

$$
|\phi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

a state with a "nice" p
test acceptance reflect about $|\phi\rangle$ test acceptance

$$
|0\rangle \equiv V_{x, s}=
$$

Knowing how to prepare the witness...
we can reflect about it.

$$
\sqrt{1-p}|\cdots 0\rangle+\sqrt{p}|\cdots 1\rangle
$$

2 QCMA (MQA)

Knowing the acceptance probability... add a rotated ancilla.

$$
\begin{gathered}
\sqrt{1-q}|0\rangle+\sqrt{q}|1\rangle \\
\sqrt{1-p}|\cdots 0\rangle+\sqrt{p}|\cdots 1\rangle
\end{gathered}
$$

2 QCMA (MQA)

Knowing the acceptance probability... add a rotated ancilla, get $1 / 4$ or $1 / 2$.

$$
\begin{gathered}
\sqrt{1-q}|0\rangle+\sqrt{q}(1)\rangle \\
\sqrt{1-p}|\cdots 0\rangle+\sqrt{p}|\cdots(1)\rangle
\end{gathered}
$$

2 QCMA (MQA)

$$
p^{\prime}=p q=1 / 4
$$

Gates with rational-number elements are universal. Both p and q are rational. It's doable.

2 QCMA (MQA) with perfect completeness

Perfectly accepts solid proofs.

2 QCMA (MQA) with perfect completeness

Perfectly accepts solid proofs.
The soundness doesn't break.

2 QCMA (MQA) with perfect completeness

$\mathrm{QCMA}_{1}=\mathrm{QCMA}$

3 Towards perfect completeness in QMA...

Let's try the same with a quantum witness.

correct p to something nice?
reflect about the unknown witness?

3 Towards perfect completeness in QMA...

Send us the witness.
Send us its acceptance probability p? a correction q ?

How to

correct p to something nice?
reflect about the unknown witness?

3 Towards perfect completeness in QMA...

Send us the witness.
Send us its acceptance probability p ?
a correction q ?
a trustworthy encoding of q ?

$$
\sqrt{1-q}|0\rangle+\sqrt{q}|1\rangle
$$

We'll give you some EPR pairs first.

How to
 correct p to something nice?
 reflect about the unknown witness?

3 Interactive Proofs

Hey, Merlin, could you
carve something
from this material?

3 Interactive Proofs

Hey, Merlin, could you
carve something
from this material?

Receive, compute, ask something, receive, conclude.

$$
I P(4)
$$

QIP $_{1}(2)$

3 Correcting p to something "nice".

A "correcting" state $\quad \sqrt{1-q}|0\rangle+\sqrt{q}|1\rangle \quad$ with $\quad p q=\frac{1}{2}$
Prepared by
Merlin using

$$
Q_{q}=\left[\begin{array}{cc}
\sqrt{1-q} & \sqrt{q} \\
\sqrt{q} & -\sqrt{1-q}
\end{array}\right]
$$

on a half of an EPR pair

OII $\Rightarrow Q_{q}|0\rangle$

A Choi-Jamiołkowski state... it allows probabilistic (heralded) simulation of Q_{q}.

3 The soundness is much easier to prove with distillation

Instead of using

$$
\sqrt{1-p}|\cdots 0\rangle+\sqrt{p}|\cdots 1\rangle
$$

"distill" the state

$$
\begin{aligned}
& \sqrt{1-r}|0\rangle+\sqrt{r}|1\rangle \\
& \text { with } r \text { related to } p
\end{aligned}
$$

$\begin{aligned} & \text { Use it to apply } V_{r} \\ & \text { probabilistically }\end{aligned} \quad V_{r}=\left[\begin{array}{cc}\sqrt{1-r} & \sqrt{r} \\ \sqrt{r} & -\sqrt{1-r}\end{array}\right]$

We can simulate the reflection about $|\phi\rangle=W(|\psi\rangle \otimes|0\rangle)$

3 The combined SOUND protocol

Send Merlin N halves of EPR pairs. He applies Q_{q}, returns them \& a witness.

Permute the "EPR pairs".
Pick the first two.
SWAP test \& Subspace test.
Distill 2 copies of $\sqrt{1-r}|0\rangle+\sqrt{r}|1\rangle$

Simulate a modified verification. If the simulation fails, accept.

3 The second result

Simulate a modified verification. If the simulation fails, accept.

3 The second result

Simulate a modified verification. If the simulation fails, accept.

$\mathrm{QMA} \subseteq \mathrm{QMA}_{1}^{\text {onst } \mathrm{CPR}}$

4 Towards perfect completeness for QMA

- It is quite difficult.

The last, tiny but annoying step.
An oracle separation to tackle.

- Classical \& "nice" witnesses.

Perfect quantum rewinding.
Reflection about a known initial state.

$\mathrm{QCMA}=\mathrm{QCMA}_{1}$

- A constant \# of EPR pairs.

Simulating reflections probabilistically. $\mathrm{QMA} \subseteq \mathrm{QMA}_{1}^{\mathrm{CEPR}}$ Shared EPR pairs give us soundness.

Stephen P. Jordan NIST Gaithersburg

Hirotada Kobayashi NII Tokyo

François Le Gall University of Tokyo

Harumichi Nishimura
Nagoya University

- Daniel Nagaj University of Vienna

Stephen P. Jordan NIST Gaithersburg

Hirotada Kobayashi NII Tokyo

François Le Gall University of Tokyo

Harumichi Nishimura
Nagoya University

- Daniel Nagaj University of Vienna
arXiv: 1111.5306 v 2

