
Improved learning graph based quantum
algorithms for Triangle and Associativity

Miklos Santha

CNRS, Université Paris Diderot
and

Centre for Quantum Technologies, NUS, Singapore

Joint work with

T. Lee CQT, Singapore
and

F. Magniez CNRS, Paris

1/22

Query complexity

Let f : D → E with D ⊆ [d]n. Often d = 2 and E = {0, 1}.

Query complexity: Number of input queries needed to evaluate f .

Computational models: Deterministic, randomized, quantum

The gap between the deterministic and quantum complexities

• can be exponential [Simon’97, Shor’97]: Period finding,
[EHK’99]: Hidden Subgroup Problem

• [BBCMW’01]: is at most polynomial for total functions

2/22

Quantum query complexity

Theorem [HLS’07, R’11, LMRSSz’11]: Let f : D → {0, 1} with
D ⊆ [d]n. Then

Q(f) = minimize
ux,i

max
x∈D

∑
i∈[n]

‖ux ,i‖2

subject to
∑
i∈[n]
xi 6=yi

〈ux ,i |uy ,i 〉 = 1 for all f (x) 6= f (y) ,

where ux ,i ∈ Rm, for x ∈ D and i ∈ [n].

3/22

Learning graphs [Belovs’11]

A learning graph G for f : D → {0, 1} with D ⊆ [d]n is

• rooted, weighted and directed acyclic graph

• vertices labeled by S ⊆ [n], the root is labeled by ∅
• An edge is e = (S , S ∪ {i}) for S ⊆ [n] and i 6∈ S

We must specify

• For every edge e its weight w(e) ∈ R+

• For every input y ∈ f −1(1) a unit flow from the root ∅, where
all sinks are labeled by sets S containing a 1-certificate for y .
The flow through edge e on y is denoted py (e)

We can also authorize edges e = (S ,S ∪ S ′) for S ∩ S ′ = ∅
Then by definition the length `(e) of the edge e is |S ′|

4/22

Learning graph for the OR function

Unit flow for the positive input x = 0 . . . 010 . . . 0, where xi = 1.

∅

{1}

{i}

{n}

1
...

1

...

1

1

5/22

Learning graphs

Learning graph complexity LG(f) of f

• Negative complexity of G:

C0(G) =
∑
e∈G

`(e)w(e)

• Positive complexity of G:

C1(G) = max
y∈f −1(1)

(∑
e∈G

`(e)
py (e)2

w(e)

)
.

• Complexity of G: C (G) =
√
C0(G)C1(G).

• LG(f) = minC (G) where G is a learning graph for f

6/22

Learning graph for the OR function

∅

{1}

{i}

{n}

1
...

1

...

1

1

C0(G) = n C1(G) = 1 C (G) =
√
n LG(OR) = O(

√
n)

7/22

Learning graph is a relaxation

Theorem[Belovs’11]: Q(f) ≤ LG(f).

Proof Let Ei = {e = (S ,S ∪ {i}) : i 6∈ S};

ux ,i =
∑
e∈Ei

√
w(e)|S〉|xS〉 for f (x) = 0

uy ,i =
∑
e∈Ei

py (e)√
w(e)

|S〉|yS〉 for f (y) = 1

Then
∑

i :xi 6=yi
〈ux ,i |uy ,i 〉 is the flow through the cut

({S : S ⊆ I} , {S : I (S})

where I = {i : xi = yi}

8/22

Learning graph in stages

∅

Level 1 Level 2 Level 3 Level 4

...

...

Stage 1 Stage 2 Stage 3

Fact: Complexity of constant stages = sum of the complexities
9/22

Complexity of a stage

d+

`(e) = `
w(e) = 1

g+

W ⊆ V

Complexity = `
√
|V |
|W |

√
d+

g+

|V |
|W | = vertex ratio

d+
g+ = out-degree ratio

10/22

Several stages

Ci = `i

√
|Vi |
|Wi |

√
d+
i

g+
i

The out-degre ratio is local to the stage, but the vertex ratio
depends on the past

Evolution of the vertex ratio with constant in-degrees d− and g−:

|Vi | = |Vi−1|
d+
i−1

d−i
; |Wi | = |Wi−1|

g+
i−1

g−i

|Vi |
|Wi |

=

(
|Vi−1|
|Wi−1|

×
d+
i−1

g+
i−1

)
:
d−i
g−i

The in-degree ratio
d−
i

g−
i

decreases the complexity

It depends on some well chosen database
11/22

Example: Element distinctness

Element Distinctness
Oracle Input: A function f : [n]→ [n].
Question: Is there a pair of distinct elements i , j ∈ [n] such that
f (i) = f (j)?

For every positive instance f we fix a 6= b such that f (a) = f (b).

12/22

Complexity of ED
Vi = {Ui ⊆ [n] : ...}

∅

U1 = ∅ |U2| = r |U3| = r + 1 |U4| = r + 2

...

...

Flow: a, b 6∈ U2 a ∈ U3 b ∈ U4

Vertex ratio at stage 3: |V2|
|W2| = 1; |V3|

|W3| =
d+

2

g+
2

:
d−

3

g−
3

= n
1 : r

1 = n
r

Complexity: C (G) = C1 + C3 = r + n/
√
r = n2/3

13/22

Triangle and SubgraphH

Triangle
Oracle Input: The adjacency matrix A :

(n
2

)
→ {0, 1} of a graph G

on vertex set [n].
Question: Is there a triangle in G?

Let H = ([k],E (H)) be some fixed k-vertex graph.

SubgraphH

Oracle Input: The adjacency matrix A :
(n

2

)
→ {0, 1} of a graph G

on vertex set [n].
Question: Is there a copy of H in G?

14/22

Learning graph based algorithms

[Magniez-Santha-Szegedy’03]: Q(Triangle) = O(n1.3)
Database is the complete graph

[Belovs’11]: Q(Triangle) = O(n35/27) = O(n1.296)
Sparsification: maintain just a random database where edge slots
are chosen with probability 0 ≤ s ≤ 1.

[Zhu’11, Lee-Magniez-Santha’11]: Q(SubgraphH) = O(n2−2/k−t),
where t = t(k ,m, d) > 0. Random database is the union of regular
bipartite graphs reflecting the structure of the subgraph

[Belovs’12]: Q(k-Distinctness) = O

(
n

1− 2k−2

2k−1

)
More general learning graph: It depends also on the value of the
queried variables

15/22

Our algorithms

• Q(Triangle) = O(n9/7) = O(n1.285)

• Generalized algorithm for SubgraphH

• Q(Associativity) = O(n10/7) = O(n1.428)

16/22

Triangle: The algorithm

For every positive instance A we fix three vertices a1, a2, a3 such
that they form a triangle

1 Setup: Load a complete bipartite graph between A1 and A2 of
respective cardinality r1 = n4/7 and r2 = n5/7

2 Load a1: Add a1 to A1 and connect it to all A2

3 Load a2: Add a2 to A2 and connect it to all A1

4 Load a3: Pick a3 and connect it with λ = n3/7 edges to A2

5 Load {a2, a3}
6 Load {a1, a3}

Vertex sets in the bipartite graphs database can be unbalanced

17/22

Triangle: The algorithm

� vertices

A3 : 1 vertex

A2 : r2 vertices
all connected to A1

A1 : r1 vertices
all connected to A2

degree �

degree r1

degree r1

degree r2

degree r2

degree r2 degree r1

a3

a2a1

18/22

Abstract language for detecting subgraphs
Let H = ([k],E (H)) be some fixed k-vertex graph

Example: 4-Path

a b cb � c a � bb � ca � b (a � b) � ca � (b � c)

Certificate () a � (b � c) 6= (a � b) � c

a1 a2 a3 a4 a5a2 � a1 a2 � a3 a3 � a4 a5 � a4

= a1 = a5

Certificate () (a2 � a3 = a1, a3 � a4 = a5 and a2 � a1 6= a5 � a4)

a1 a2 a3 a4 a5

a1

a3

a4a2 = a5

1 2 3 4 5

Loading schedule: sequence S = s1s2 . . . sk+m which enumerates
all vertices and edges of H.
Example: S = [1, 2, 4, 3, (2, 1), (2, 3), (3, 4), 5, (5, 4)].

L-graph vertices: regular k-partite graphs with classes A1, . . . ,Ak ,
and bipartite graphs Eij between Ai and Aj for {i , j} ∈ E (H).

Parameters: Set sizes {ri} and vertex degrees {dij}

Example: r1 = n, r2 = n4/7, r3 = n6/7, r4 = n5/7, r5 = 1;
d21 = n6/7, d23 = n6/7, d34 = n5/7, d54 = 1.

19/22

Abstract language for detecting subgraphs
Theorem: There is an explicit function φ such that

LG(SubgraphH) ≤ φ(S , {ri}, {dij}).

Example: LG(4-Path) = O(n10/7)

Best parameters can be found by linear programming:
https://github.com/troyjlee/learning_graph_lp

Theorem is extendable to:

• H is directed with possible self-loops

• Constant number of 1-certificates instead of just one

• Functions on labeled graphs:

Let f : [n]n×n → {0, 1} be such that all minimal 1-certificate
graphs are isomorphic to a fixed graph H. Then

LG(f) ≤ LG(SubgraphH)

20/22

https://github.com/troyjlee/learning_graph_lp

Associativity
Oracle Input: Operation ◦ : [n]× [n]→ [n]
Question: ∃ a triple (a, b, c) such that (a ◦ b) ◦ c 6= a ◦ (b ◦ c)?

Grover search: Q(Associativity) = O(n3/2)

Theorem: Q(Assoc) = O(n10/7) = O(n1.428)

Proof: a b cb � c a � bb � ca � b (a � b) � ca � (b � c)

Certificate () a � (b � c) 6= (a � b) � c

a1 a2 a3 a4 a5a2 � a1 a2 � a3 a3 � a4 a5 � a4

= a1= a5

a1 a2 a3 a4 a5

a1

a3

a4a2 = a5

1 2 3 4 5

Certificate () (a2 � a3 = a5, a3 � a4 = a1 and a2 � a1 6= a5 � a4)

Certificate graph:

a b cb � c a � bb � ca � b (a � b) � ca � (b � c)

Certificate () a � (b � c) 6= (a � b) � c

a1 a2 a3 a4 a5a2 � a1 a2 � a3 a3 � a4 a5 � a4

= a1 = a5

Certificate () (a2 � a3 = a1, a3 � a4 = a5 and a2 � a1 6= a5 � a4)

a1 a2 a3 a4 a5

a1

a3

a4a2 = a5

Q(Assoc) ≤ LG(Assoc) ≤ LG(4-Path) = O(n10/7))
21/22

Conclusion

Recent results:

• [Jeffery, Kothari, Magniez’12]: Can simulate our algorithms by
quantum walks

• [Belovs, Rosmanis’12]: Our triangle algorithm is the best
non-adaptive learning graph algorithm

Open problems: Complexity of

• Triangle

• Graph Collision

• k-Distinctness

• Associativity

• Matrix Product Verification

22/22

