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Query complexity

Let f : D → E with D ⊆ [d ]n. Often d = 2 and E = {0, 1}.

Query complexity: Number of input queries needed to evaluate f .

Computational models: Deterministic, randomized, quantum

The gap between the deterministic and quantum complexities

• can be exponential [Simon’97, Shor’97]: Period finding,
[EHK’99]: Hidden Subgroup Problem

• [BBCMW’01]: is at most polynomial for total functions
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Quantum query complexity

Theorem [HLS’07, R’11, LMRSSz’11]: Let f : D → {0, 1} with
D ⊆ [d ]n. Then

Q(f ) = minimize
ux,i

max
x∈D

∑
i∈[n]

‖ux ,i‖2

subject to
∑
i∈[n]
xi 6=yi

〈ux ,i |uy ,i 〉 = 1 for all f (x) 6= f (y) ,

where ux ,i ∈ Rm, for x ∈ D and i ∈ [n].
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Learning graphs [Belovs’11]

A learning graph G for f : D → {0, 1} with D ⊆ [d ]n is

• rooted, weighted and directed acyclic graph

• vertices labeled by S ⊆ [n], the root is labeled by ∅
• An edge is e = (S , S ∪ {i}) for S ⊆ [n] and i 6∈ S

We must specify

• For every edge e its weight w(e) ∈ R+

• For every input y ∈ f −1(1) a unit flow from the root ∅, where
all sinks are labeled by sets S containing a 1-certificate for y .
The flow through edge e on y is denoted py (e)

We can also authorize edges e = (S ,S ∪ S ′) for S ∩ S ′ = ∅
Then by definition the length `(e) of the edge e is |S ′|
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Learning graph for the OR function

Unit flow for the positive input x = 0 . . . 010 . . . 0, where xi = 1.

∅

{1}

{i}

{n}

1
...

1

...

1

1
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Learning graphs

Learning graph complexity LG(f ) of f

• Negative complexity of G:

C0(G) =
∑
e∈G

`(e)w(e)

• Positive complexity of G:

C1(G) = max
y∈f −1(1)

(∑
e∈G

`(e)
py (e)2

w(e)

)
.

• Complexity of G: C (G) =
√
C0(G)C1(G).

• LG(f ) = minC (G) where G is a learning graph for f
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Learning graph for the OR function

∅

{1}

{i}

{n}

1
...

1

...

1

1

C0(G) = n C1(G) = 1 C (G) =
√
n LG(OR) = O(

√
n)
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Learning graph is a relaxation

Theorem[Belovs’11]: Q(f ) ≤ LG(f ).

Proof Let Ei = {e = (S ,S ∪ {i}) : i 6∈ S};

ux ,i =
∑
e∈Ei

√
w(e)|S〉|xS〉 for f (x) = 0

uy ,i =
∑
e∈Ei

py (e)√
w(e)

|S〉|yS〉 for f (y) = 1

Then
∑

i :xi 6=yi
〈ux ,i |uy ,i 〉 is the flow through the cut

({S : S ⊆ I} , {S : I ( S})

where I = {i : xi = yi}
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Learning graph in stages

∅

Level 1 Level 2 Level 3 Level 4

...

...

Stage 1 Stage 2 Stage 3

Fact: Complexity of constant stages = sum of the complexities
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Complexity of a stage

d+

`(e) = `
w(e) = 1

g+

W ⊆ V

Complexity = `
√
|V |
|W |

√
d+

g+

|V |
|W | = vertex ratio

d+
g+ = out-degree ratio
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Several stages

Ci = `i

√
|Vi |
|Wi |

√
d+
i

g+
i

The out-degre ratio is local to the stage, but the vertex ratio
depends on the past

Evolution of the vertex ratio with constant in-degrees d− and g−:

|Vi | = |Vi−1|
d+
i−1

d−i
; |Wi | = |Wi−1|

g+
i−1

g−i

|Vi |
|Wi |

=

(
|Vi−1|
|Wi−1|

×
d+
i−1

g+
i−1

)
:
d−i
g−i

The in-degree ratio
d−
i

g−
i

decreases the complexity

It depends on some well chosen database
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Example: Element distinctness

Element Distinctness
Oracle Input: A function f : [n]→ [n].
Question: Is there a pair of distinct elements i , j ∈ [n] such that
f (i) = f (j)?

For every positive instance f we fix a 6= b such that f (a) = f (b).
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Complexity of ED
Vi = {Ui ⊆ [n] : ...}

∅

U1 = ∅ |U2| = r |U3| = r + 1 |U4| = r + 2

...

...

Flow: a, b 6∈ U2 a ∈ U3 b ∈ U4

Vertex ratio at stage 3: |V2|
|W2| = 1; |V3|

|W3| =
d+

2

g+
2

:
d−

3

g−
3

= n
1 : r

1 = n
r

Complexity: C (G) = C1 + C3 = r + n/
√
r = n2/3
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Triangle and SubgraphH

Triangle
Oracle Input: The adjacency matrix A :

(n
2

)
→ {0, 1} of a graph G

on vertex set [n].
Question: Is there a triangle in G?

Let H = ([k],E (H)) be some fixed k-vertex graph.

SubgraphH

Oracle Input: The adjacency matrix A :
(n

2

)
→ {0, 1} of a graph G

on vertex set [n].
Question: Is there a copy of H in G?
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Learning graph based algorithms

[Magniez-Santha-Szegedy’03]: Q(Triangle) = O(n1.3)
Database is the complete graph

[Belovs’11]: Q(Triangle) = O(n35/27) = O(n1.296)
Sparsification: maintain just a random database where edge slots
are chosen with probability 0 ≤ s ≤ 1.

[Zhu’11, Lee-Magniez-Santha’11]: Q(SubgraphH) = O(n2−2/k−t),
where t = t(k ,m, d) > 0. Random database is the union of regular
bipartite graphs reflecting the structure of the subgraph

[Belovs’12]: Q(k-Distinctness) = O

(
n

1− 2k−2

2k−1

)
More general learning graph: It depends also on the value of the
queried variables
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Our algorithms

• Q(Triangle) = O(n9/7) = O(n1.285)

• Generalized algorithm for SubgraphH

• Q(Associativity) = O(n10/7) = O(n1.428)
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Triangle: The algorithm

For every positive instance A we fix three vertices a1, a2, a3 such
that they form a triangle

1 Setup: Load a complete bipartite graph between A1 and A2 of
respective cardinality r1 = n4/7 and r2 = n5/7

2 Load a1: Add a1 to A1 and connect it to all A2

3 Load a2: Add a2 to A2 and connect it to all A1

4 Load a3: Pick a3 and connect it with λ = n3/7 edges to A2

5 Load {a2, a3}
6 Load {a1, a3}

Vertex sets in the bipartite graphs database can be unbalanced
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Triangle: The algorithm

� vertices

A3 : 1 vertex

A2 : r2 vertices
all connected to A1

A1 : r1 vertices
all connected to A2

degree �

degree r1

degree r1

degree r2

degree r2

degree r2 degree r1

a3

a2a1
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Abstract language for detecting subgraphs
Let H = ([k],E (H)) be some fixed k-vertex graph

Example: 4-Path

a b cb � c a � bb � ca � b (a � b) � ca � (b � c)

Certificate () a � (b � c) 6= (a � b) � c

a1 a2 a3 a4 a5a2 � a1 a2 � a3 a3 � a4 a5 � a4

= a1 = a5

Certificate () (a2 � a3 = a1, a3 � a4 = a5 and a2 � a1 6= a5 � a4)

a1 a2 a3 a4 a5

a1

a3

a4a2 = a5

1 2 3 4 5

Loading schedule: sequence S = s1s2 . . . sk+m which enumerates
all vertices and edges of H.
Example: S = [1, 2, 4, 3, (2, 1), (2, 3), (3, 4), 5, (5, 4)].

L-graph vertices: regular k-partite graphs with classes A1, . . . ,Ak ,
and bipartite graphs Eij between Ai and Aj for {i , j} ∈ E (H).

Parameters: Set sizes {ri} and vertex degrees {dij}

Example: r1 = n, r2 = n4/7, r3 = n6/7, r4 = n5/7, r5 = 1;
d21 = n6/7, d23 = n6/7, d34 = n5/7, d54 = 1.
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Abstract language for detecting subgraphs
Theorem: There is an explicit function φ such that

LG(SubgraphH) ≤ φ(S , {ri}, {dij}).

Example: LG(4-Path) = O(n10/7)

Best parameters can be found by linear programming:
https://github.com/troyjlee/learning_graph_lp

Theorem is extendable to:

• H is directed with possible self-loops

• Constant number of 1-certificates instead of just one

• Functions on labeled graphs:

Let f : [n]n×n → {0, 1} be such that all minimal 1-certificate
graphs are isomorphic to a fixed graph H. Then

LG(f ) ≤ LG(SubgraphH)
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Associativity
Oracle Input: Operation ◦ : [n]× [n]→ [n]
Question: ∃ a triple (a, b, c) such that (a ◦ b) ◦ c 6= a ◦ (b ◦ c)?

Grover search: Q(Associativity) = O(n3/2)

Theorem: Q(Assoc) = O(n10/7) = O(n1.428)

Proof: a b cb � c a � bb � ca � b (a � b) � ca � (b � c)

Certificate () a � (b � c) 6= (a � b) � c

a1 a2 a3 a4 a5a2 � a1 a2 � a3 a3 � a4 a5 � a4

= a1= a5

a1 a2 a3 a4 a5

a1

a3

a4a2 = a5

1 2 3 4 5

Certificate () (a2 � a3 = a5, a3 � a4 = a1 and a2 � a1 6= a5 � a4)

Certificate graph:

a b cb � c a � bb � ca � b (a � b) � ca � (b � c)

Certificate () a � (b � c) 6= (a � b) � c

a1 a2 a3 a4 a5a2 � a1 a2 � a3 a3 � a4 a5 � a4

= a1 = a5

Certificate () (a2 � a3 = a1, a3 � a4 = a5 and a2 � a1 6= a5 � a4)

a1 a2 a3 a4 a5

a1

a3

a4a2 = a5

Q(Assoc) ≤ LG(Assoc) ≤ LG(4-Path) = O(n10/7))
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Conclusion

Recent results:

• [Jeffery, Kothari, Magniez’12]: Can simulate our algorithms by
quantum walks

• [Belovs, Rosmanis’12]: Our triangle algorithm is the best
non-adaptive learning graph algorithm

Open problems: Complexity of

• Triangle

• Graph Collision

• k-Distinctness

• Associativity

• Matrix Product Verification
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