Michael Kastoryano and Kristan Temme

 $^{
m 1}$ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany ²Center for Theoretical Physics, MIT, Cambridge, MA 02139, USA

QIP 2013 Beijing

January 21, 2013

Outline

- Motivation
 Setting
 Convergence rates
- Results
 Mixing times
 Mathematical results
- 3 Applications and outlook
 Quantum Expanders
 Liouvillian Complexity

Setting

• We consider only finite dimensional state spaces.

- We consider only finite dimensional state spaces.
- We consider an open quantum system described by a Markovian master equation

$$\frac{d}{dt}\rho_t = \mathcal{L}(\rho) = i[H, \rho] + \sum_k L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \}$$
 (1)

- We consider only finite dimensional state spaces.
- We consider an open quantum system described by a Markovian master equation

$$\frac{d}{dt}\rho_t = \mathcal{L}(\rho) = i[H, \rho] + \sum_k L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \}$$
 (1)

• We assume that the Liouvillian is *primitive*, meaning that $\mathcal L$ has a unique full-rank stationary state $\sigma>0$

- We consider only finite dimensional state spaces.
- We consider an open quantum system described by a Markovian master equation

$$\frac{d}{dt}\rho_t = \mathcal{L}(\rho) = i[H, \rho] + \sum_k L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \}$$
 (1)

- We assume that the Liouvillian is *primitive*, meaning that $\mathcal L$ has a unique full-rank stationary state $\sigma>0$
- If $\Gamma_{\sigma}\mathcal{L} = \mathcal{L}^*\Gamma_{\sigma}$, where σ is the stationary state of \mathcal{L} and $\Gamma_{\sigma}(X) = \sqrt{\sigma}X\sqrt{\sigma}$, the \mathcal{L} is *reversible*.

- We consider only finite dimensional state spaces.
- We consider an open quantum system described by a Markovian master equation

$$\frac{d}{dt}\rho_t = \mathcal{L}(\rho) = i[H, \rho] + \sum_k L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \}$$
 (1)

- We assume that the Liouvillian is *primitive*, meaning that \mathcal{L} has a unique full-rank stationary state $\sigma > 0$
- If $\Gamma_{\sigma}\mathcal{L} = \mathcal{L}^*\Gamma_{\sigma}$, where σ is the stationary state of \mathcal{L} and $\Gamma_{\sigma}(X) = \sqrt{\sigma}X\sqrt{\sigma}$, the \mathcal{L} is *reversible*.

<u>Note</u>: we do not yet make any assumptions about locality or geometry at this point.

O Convergence rates

Motivation

The question

Let \mathcal{L} be the generator of a primitive reversible quantum dynamical semigroup. Given $\epsilon > 0$, for what $\tau > t > 0$ do we have

$$||\rho_t - \sigma||_1 \le \epsilon? \tag{2}$$

Convergence rates

•0

The question

Let \mathcal{L} be the generator of a primitive reversible quantum dynamical semigroup. Given $\epsilon > 0$, for what $\tau > t > 0$ do we have

$$||\rho_t - \sigma||_1 \le \epsilon? \tag{2}$$

The answer: general convergence theorem

Let $\lambda > 0$ be the spectral gap of \mathcal{L} , then for any $b < \lambda$, there exists a finite A such that

$$||\rho_t - \sigma||_1 \le Ae^{-bt}. \tag{3}$$

The question

Let \mathcal{L} be the generator of a primitive reversible quantum dynamical semigroup. Given $\epsilon > 0$, for what $\tau > t > 0$ do we have

$$||\rho_t - \sigma||_1 \le \epsilon? \tag{2}$$

The answer: general convergence theorem

Let $\lambda > 0$ be the *spectral gap* of \mathcal{L} , then for any $b \leq \lambda$, there exists a finite A such that

$$||\rho_t - \sigma||_1 \le Ae^{-bt}. (3)$$

What are good choices for A and b? We will argue that the Log Sobolev machinery is the finest available to answer this question.

• Unital quantum channels and random unitary maps (the fast scrambling conjecture).

- Unital quantum channels and random unitary maps (the fast scrambling conjecture).
- Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems.

- Unital quantum channels and random unitary maps (the fast scrambling conjecture).
- **Q** Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems.
- 3 Liouvillian complexity: what can we say about systems whose Log Sobolev constant is independent of the system size?

- Unital quantum channels and random unitary maps (the fast scrambling conjecture).
- **Q** Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems.
- 3 Liouvillian complexity: what can we say about systems whose Log Sobolev constant is independent of the system size?
- 4 Dissipative algorithms?

a lluital accepture absorbed and usuals

- Unital quantum channels and random unitary maps (the fast scrambling conjecture).
- **Q** Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems.
- 3 Liouvillian complexity: what can we say about systems whose Log Sobolev constant is independent of the system size?
- 4 Dissipative algorithms?
- **5** Concentration of measure?

A few definitions to start with...

non-commutative \mathbb{L}_p spaces

• The \mathbb{L}_p inner product. For two hermitian operators f, g:

$$\langle f, g \rangle_{\sigma} = \operatorname{tr}[\Gamma_{\sigma}(f)g] \equiv \operatorname{tr}[\sigma^{1/2}f\sigma^{1/2}g].$$
 (4)

A few definitions to start with...

non-commutative \mathbb{L}_p spaces

• The \mathbb{L}_p inner product. For two hermitian operators f, g:

$$\langle f, g \rangle_{\sigma} = \operatorname{tr}[\Gamma_{\sigma}(f)g] \equiv \operatorname{tr}[\sigma^{1/2}f\sigma^{1/2}g].$$
 (4)

• The \mathbb{L}_p norm. For any hermitian operator f:

$$||f||_{p,\sigma} = \operatorname{tr}[|\Gamma_{\sigma}^{1/p}(f)|^{p}]^{1/p}$$
(5)

A few more definitions...

Variance and Entropy functionals

• The variance

$$Var_{\sigma}(g) = tr[\Gamma_{\sigma}(g)g] - tr[\Gamma_{\sigma}(g)]^{2}.$$
 (6)

A few more definitions...

Variance and Entropy functionals

• The variance

$$Var_{\sigma}(g) = tr[\Gamma_{\sigma}(g)g] - tr[\Gamma_{\sigma}(g)]^{2}.$$
 (6)

• The \mathbb{L}_p relative entropies. For any hermitian operator f:

$$\operatorname{Ent}_1(f) = \operatorname{tr}[\Gamma_{\sigma}(f)(\log(\Gamma_{\sigma}(f)) - \log(\sigma))] \tag{7}$$

$$-\mathrm{tr}[\Gamma_{\sigma}(f)]\log(\mathrm{tr}[\Gamma_{\sigma}(f)]) \tag{8}$$

$$\operatorname{Ent}_{2}(f) = \operatorname{tr}\left[\left(\Gamma_{\sigma}^{1/2}(f)\right)^{2} \log \left(\Gamma_{\sigma}^{1/2}(f)\right)\right]$$

$$-\frac{1}{2} \operatorname{tr}\left[\left(\Gamma_{\sigma}^{1/2}(f)\right)^{2} \log (\sigma)\right]$$

$$-\frac{1}{2} \|f\|_{2,\sigma}^{2} \log \left(\|f\|_{2,\sigma}^{2}\right).$$

$$(9)$$

Yet more... (sorry!)

Dirichlet Forms

$$\mathcal{E}_1(f) = -\frac{1}{2} \operatorname{tr}[\Gamma_{\sigma}(\mathcal{L}(f))(\log(\Gamma_{\sigma}(f)) - \log(\sigma))] \qquad (10)$$

$$\mathcal{E}_2(f) = -\langle f, \mathcal{L}(f) \rangle_{\sigma}. \tag{11}$$

Useful identities:

$$\operatorname{Var}(\Gamma_{\sigma}^{-1}(\rho)) = \chi^{2}(\rho, \sigma), \quad \operatorname{Ent}_{2}(\Gamma_{\sigma}^{-1}(\rho)) = \operatorname{S}(\rho||\sigma) \quad (12)$$

Spectral Gap and Log-Sobolev constant

• The spectral gap of \mathcal{L} :

$$\lambda = \inf_{f \neq 0} \frac{\mathcal{E}_2(f)}{\operatorname{Var}_{\sigma}(f)} \tag{13}$$

Spectral Gap and Log-Sobolev constant

• The spectral gap of \mathcal{L} :

$$\lambda = \inf_{f \neq 0} \frac{\mathcal{E}_2(f)}{\operatorname{Var}_{\sigma}(f)} \tag{13}$$

• The (1,2)- logarithmic Sobolev constant

$$\alpha_{1,2} = \inf_{f>0} \frac{\mathcal{E}_{1,2}(f)}{\operatorname{Ent}_{1,2}(f)}$$
 (14)

Spectral Gap and Log-Sobolev constant

• The spectral gap of \mathcal{L} :

$$\lambda = \inf_{f \neq 0} \frac{\mathcal{E}_2(f)}{\operatorname{Var}_{\sigma}(f)} \tag{13}$$

• The (1, 2)- logarithmic Sobolev constant

$$\alpha_{1,2} = \inf_{f>0} \frac{\mathcal{E}_{1,2}(f)}{\text{Ent}_{1,2}(f)}$$
 (14)

<u>Note</u>: one can in fact define a whole family of Log Sobolev constants α_p , with $p \ge 0$.

Theorem

Let \mathcal{L} denote the generator of a primitive reversible semigroup with fixed point σ . Then,

 $\mathbf{0} \chi^2$ bound:

$$||\rho_{t} - \sigma||_{1} \leq \sqrt{\chi^{2}(\rho_{t}, \sigma)}$$

$$\leq \sqrt{\chi^{2}(\rho, \sigma)} e^{-\lambda t} \leq \sqrt{1/\sigma_{\min}} e^{-\lambda t}.$$

$$(15)$$

Where σ_{\min} denotes the smallest eigenvalue of the fixed point σ .

Theorem

Let \mathcal{L} denote the generator of a primitive reversible semigroup with fixed point σ . Then,

 \bullet χ^2 bound:

$$||\rho_{t} - \sigma||_{1} \leq \sqrt{\chi^{2}(\rho_{t}, \sigma)}$$

$$\leq \sqrt{\chi^{2}(\rho, \sigma)} e^{-\lambda t} \leq \sqrt{1/\sigma_{\min}} e^{-\lambda t}.$$

$$(15)$$

2 Log-Sobolev bound:

$$||\rho_t - \sigma||_1 \leq \sqrt{2S(\rho_t||\sigma)}$$

$$\leq \sqrt{2S(\rho||\sigma)}e^{-\alpha_1 t} \leq \sqrt{2\log(1/\sigma_{\min})}e^{-\alpha_1 t}.$$
(16)

Where σ_{\min} denotes the smallest eigenvalue of the fixed point σ .

Davies generators describe the dissipative dynamics resulting as the weak (or singular) coupling limit of a system coupled to a large heat bath. For these *thermal maps*, the Log-Sobolev constant is the minimal normalized rate of change of the free energy of the system:

$$\alpha_1 = \inf_{\rho} \left. \partial_t \log \left[F(\rho_t) - F(\rho_\beta) \right] \right|_{t=0}, \tag{17}$$

where $F(\rho) = \text{tr}[\rho H] - \frac{1}{\beta}S(\rho)$ is the free energy of the system, and ρ_{β} is the Gibbs state.

Mathematical results

Theorem (Partial ordering)

Let $\mathcal L$ be a primitive reversible Liouvillian with stationary state σ . The Log-Sobolev constants α_1 , α_2 and the spectral gap λ of $\mathcal L$ are related as:

$$\alpha_2 \le \alpha_1 \le \lambda. \tag{18}$$

Theorem (Hypercontractivity)

Let \mathcal{L} be a primitive Liouvillian with stationary state σ , and let $T_t = e^{t\mathcal{L}}$ be its associated semigroup. Then

- If there exists a $\alpha > 0$ such that $||T_t||_{(2,\sigma)\to(p(t),\sigma)} \le 1$ for all t > 0 and $2 \le p(t) \le 1 + e^{2\alpha t}$. Then $\mathcal L$ satisfies LS_2 with $\alpha_2 \ge \alpha$.
- ② If \mathcal{L} is weakly \mathbb{L}_p -regular, and has an LS₂ constant α_2 , then $||T_t||_{(2,\sigma)\to(p(t),\sigma)} \leq 1$ for all t>0 when $2 \leq p(t) \leq 1 + \mathrm{e}^{2\alpha_2 t}$. If, furthermore, \mathcal{L} is strongly \mathbb{L}_p regular, then the above holds for all t>0 when $2 \leq p(t) \leq 1 + \mathrm{e}^{4\alpha_2 t}$.

Quantum expanders

Quantum Expander: (sequence of) quantum channel with i) a fixed number of Kraus operators (D), and ii) the spectral gap λ of the channel is asymptotically independent of dimension d. Then,

$$\frac{(1-2/d)\lambda}{\log(d-1)} \le \alpha_2 \le \log D \frac{4 + \log\log d}{2\log 3d/4} \tag{19}$$

Quantum expanders

Quantum Expander: (sequence of) quantum channel with i) a fixed number of Kraus operators (D), and ii) the spectral gap λ of the channel is asymptotically independent of dimension d. Then,

$$\frac{(1-2/d)\lambda}{\log(d-1)} \le \alpha_2 \le \log D \frac{4 + \log\log d}{2\log 3d/4} \tag{19}$$

The mixing time is of order $\log d$

Suppose that \mathcal{L} describes the open system dynamics on a lattice of qudits. Assume furthermore that \mathcal{L} is: i) **primitive and reversible**, ii) **local**, and iii) has a Log Sobolev constant α_1 which is **system size independent**. Then we get

(strong) clustering of correlations

$$\langle O_A O_B \rangle_{\sigma} - \langle O_A \rangle_{\sigma} \langle O_B \rangle_{\sigma} \le K \log \left(\frac{1}{\sigma_{\min}} \right) e^{-\alpha_1 d(A,B)/\nu}$$
 (20)

where K is volume like.

0000

Suppose that \mathcal{L} describes the open system dynamics on a lattice of qudits. Assume furthermore that \mathcal{L} is: i) **primitive and** reversible, ii) local, and iii) has a Log Sobolev constant α_1 with is system size independent. Then we get

Stability of Liouvillians

Let $\mathcal Q$ be a local perturbation of $\mathcal L$, and $\mathcal L'=\mathcal L+\mathcal Q$ with stationary state σ' , then

$$||\sigma - \sigma'||_1 \le \frac{||\mathcal{Q}||_{1-1}}{\alpha_1} \left(\log \left(\log \left(\frac{1}{\sigma_{\min}} \right) \right) + 1 \right)$$
 (21)

Liouvillian Complexity

Thank you for your attention!

References

MJK and Kristan Temme

Quantum logarithmic Sobolev inequalities and rapid mixing. arXiv:1207.3261

R. Olkiewicz, B. Zegarlinski

Hypercontractivity in noncommutative \mathbb{L}_p spaces.

J. Func. Analy. 161(1):246-285 (1999)

K. Temme, MJK, M.B. Ruskai, M.M. Wolf, F. Verstraete

The χ^2 divergence and mixing times of quantum Markov processes.

J. Math. Phys. 51, 122201 (2010)

MJK, T. Osborne, J. Eisert,

Correlations and Area laws for open quantum systems.

upcoming