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Introduction: Codes

Classical data over quantum channels.

Entanglement-assisted (EA) code Z of size M :

E

Ŵ

Alice

Bob

SM
message W ∈ {1, . . . ,M}

ηAEBE
(initial entanglement)

AE

BE

ρ(W )AC(W )

D

A

B

For uniform source SM (Pr(W = w|SM ) = 1/M):
Average input ρA = 1

M

∑M
w=1 ρ(w)A.

Error probability ε = Pr(Ŵ 6= W |E ,Z,SM ).



Introduction: Codes

Classical data over quantum channels.

Entanglement-assisted (EA) code Z of size M :

E

Ŵ
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Introduction: Code performance and capacities

I ME
ε (ρ, E) denotes largest size of entanglement-assisted code

with average input ρ and error probability ε for E .

I ME
ε (E) = maxρME

ε (ρ, E)
I Mε(ρ, E) and Mε(E) denote the corresponding quantities for

unassisted codes (ηAEBE
separable).

I For a channel E = (En)n∈N, where En is CPTP map for n
channel uses (taking states of An to states of Bn):
CE(E) := limε→0 limn→∞

1
n logME

ε (En)
I Asymptotics: For channels with i.i.d. uses En = E⊗n:

I CE(E) has single letter BSST formula
(arXiv:quant-ph/0106052).

I C(E) is regularised Holevo bound.
I Both reduce to Shannon capacity formula for classical

channels.
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Background and motivation
Converse and achievability bounds1 on the rate 1

n logMε(En)
when ε = 1/1000 and E is the BSC with Pr(bit flip) = 0.11.

Beyond Capacity
Blocklength n
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1Polyanskiy, Poor, Verdú. IEEE Trans. Inf. T., 56, 2307-2359



Background and motivation

I Datta & Hsieh (arXiv:1105.3321) give converse (and
achievability) for ME

ε (E), but it has some disadvantages
(diverges as ε→ 0; not clear how to compute).

I Polyanskiy–Poor–Verdú gives a classical converse which
relates coding to hypothesis testing. It is simple, and powerful
enough to derive many important classical converse bounds,
so we want a quantum generalisation.

I The converse in Wang & Renner (arXiv:1007.5456) for Mε(E)
is almost such a generalisation for unassisted codes (see also
Hayashi’s book).

I We obtain a hierarchy of bounds based on quantum
hypothesis testing of a bipartite system with restricted
measurements, including a novel converse for EA codes, and a
generalisation of Wang-Renner converse for unassisted codes.
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Background: Quantum hypothesis testing

H0: State is τ0. H1: State is τ1.

Test T for H0: The element of a binary POVM {T, 11− T}
for the outcome “accept H0”.

α(T ) := Pr(reject H0|T,H0) = 1− Trτ0T (false negative),

β(T ) := Pr(accept H0|T,H1) = Trτ1T (false positive).

For a class of tests Ω we define

βΩ
ε (τ0, τ1) := min

T∈Ω
β(T, τ1), subject to α(T, τ0) ≤ ε.
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Background: Classes of test for bipartite system

I L: Local tests - Test on joint outcome of local measurements
(coordinated only by shared randomness).

I LC1: One-way communication from Alice to Bob.

I PPT: 0 ≤ ΓB[TÃB] ≤ 11.

I ALL: All tests. Symbol omitted e.g. βε = βALL
ε .

L ⊂ LC1 ⊂ PPT ⊂ ALL.
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Main idea: Codes to tests

From a CPTP map E and an EA code with average input state
ρA and error ε when used with E we construct:

The state {ρ; E}ÃB := EB|A[ψÃA] given by E acting on a certain

purification of ρ: ψÃA := ρ
1
2
AΦ̃AÃρ

1
2
A, (Φ̃AÃ :=

P
ij |i〉Ã|i〉A〈j|Ã〈j|A).

E
{ρ; E}ÃBψÃA

ρA

Ã

A

Ã

B

A test TÃB such that Tr{ρ; E}ÃBTÃB = 1− ε.

Unassisted codes map to local tests.
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E
{ρ; E}ÃBψÃA
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Unassisted codes map to local tests.



Suppose there exists a code of size M , average input ρ, with error
ε for E , which maps to a test TÃB in class Ω.

E

H0: State is {ρ; E}ÃB

ψÃA
ρA

Ã

A

Ã

B F

H1: State is ρ∗
Ã
σB

ψÃA

Ã

A

Ã

B

• α(TÃB) = 1− Tr{ρ; E}ÃBTÃB = ε.
For a CPTP map F with constant output σB

the success probability is 1/M , so
• β(TÃB) = Trρ∗

Ã
σBTÃB = 1/M .

Therefore ∀σB : βΩ
ε ({ρ; E}ÃB, ρ

∗
Ã
σB) ≤ 1/M , or

M ≤ BΩ
ε (ρ, E) :=

(
max
σ

βΩ
ε ({ρ; E}ÃB, ρ

∗
Ã
σB)
)−1
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E

H0: State is {ρ; E}ÃB
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Ã

B F

H1: State is ρ∗
Ã
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Ã
σB)
)−1



Suppose there exists a code of size M , average input ρ, with error
ε for E , which maps to a test TÃB in class Ω.
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The main bounds

BΩ
ε (ρ, E) :=

(
max
σ

βΩ
ε ({ρ; E}ÃB, ρ

∗
Ã
σB)
)−1

Defining BΩ
ε (E) := maxρBΩ(ρ, E) we have:

For entanglement-assisted codes: ME
ε (ρ, E) ≤ Bε(ρ, E), and

ME
ε (E) ≤ Bε(E);

For unassisted codes: Since these map to local tests, for any class
Ω containing L, Mε(ρ, E) ≤ BΩ

ε (ρ, E), and

Mε(E) ≤ BΩ
ε (E).



The main bounds

BΩ
ε (ρ, E) :=

(
max
σ

βΩ
ε ({ρ; E}ÃB, ρ

∗
Ã
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Constructing the test

A
ν = AµA†.µ ν

ΨG̃ÃGA = ψ
1
2
GAΦ̃G̃ÃGAψ

1
2
GA

ρA = 1
M

∑
w TrGU(w)GAψGAU(w)†GA

E

= ?

11

C(W )

U(W )ψ
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ΨG̃ÃGA = ψ
1
2
GAΦ̃G̃ÃGAψ
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1− ε = Tr{ρ; E}ÃBTÃB where, with K(w)GA := U(w)GAψ
1
2
GA,
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Ã

G̃
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Properties of the bounds

• They reduce to the PPV converse for classical channels.
• Entanglement-assisted bound:

I Can recover converse part of BSST.

I Bε(E)−1 is given by an SDP which generalises the linear
program formulation of the PPV converse (Matthews
arXiv:1109.5417)

• Bounds for unassisted codes:

I The upper bound for Mε(E) in Wang-Renner
(arXiv:1007.5456) is equivalent to Ω = LC1 and fixing
σ = E [ρ], which is no stronger than BLC1

ε (E) and can be
worse.

I L bound can be stronger (but less nice in other ways).

I BLC1
ε (E), and hence BL

ε (E) can recover Holevo bound (see
WR).

I BPPT
ε (E)−1 is given by a semidefinite program (SDP).
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Properties of the bounds2

BΩ
ε (E) =

(
min
ρ

max
σ

βΩ
ε ({ρ; E}ÃB, ρ

∗
Ã
σB)
)−1

I βΩ
ε ({ρ; E}ÃB, ρ

∗
Ã
σB) is

I Concave in σ.
I Convex in ρ if LC1 ⊆ Ω.

I maxσ βΩ
ε ({ρ; E}ÃB, ρ

∗
Ã
σB) is also convex in ρ.

These properties allow simplification given symmetry:

I For a group covariant map ∀g ∈ G : E [UgρU
†
g ] = VgE [ρ]V †g ,

we can restrict to group invariant ρ and σ in the optimisations.

I For permutation covariant channels: Poly(n) size SDP for EA
converse (Ω = ALL).

2See Y. Polyanskiy’s study of classical bound on his website. To appear in
IEEE Trans. Inf. T.
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Ã
σB)
)−1

I βΩ
ε ({ρ; E}ÃB, ρ
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∗
Ã
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∗
Ã
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Example: EA coding over the depolarising channel

I d-dimensional depolarising channel:
D[τ ] = (1− p)τ + pTr(τ)µ,
where µ = 11/d is the maximally mixed state.

I D⊗n has the covariance group Sn n U(d)×n

I Only G invariant ρ and σ are the maximally mixed states.

I {µ⊗n;D⊗n} = φ(p)⊗n where φ(p) := (1− p)φÃB + pµÃµB,
where φ is the U ⊗ U∗ invariant maximally entangled state.

I ME
ε (D⊗n) ≤ Bε(E) = βε((φ(p)⊗n)ÃnBn‖(µ⊗n)Ãn(µ⊗n)Bn)−1

I Since the arguments commute, and there are only two distinct
eigenvalues (eigenprojectors φ and 11− φ), the problem is
equivalent to classical hypothesis testing between two
differently biased coins, based on n tosses.
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where φ is the U ⊗ U∗ invariant maximally entangled state.

I ME
ε (D⊗n) ≤ Bε(E) = βε((φ(p)⊗n)ÃnBn‖(µ⊗n)Ãn(µ⊗n)Bn)−1

I Since the arguments commute, and there are only two distinct
eigenvalues (eigenprojectors φ and 11− φ), the problem is
equivalent to classical hypothesis testing between two
differently biased coins, based on n tosses.



Example: EA coding over the depolarising channel
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Figure: The upper bound on the rate for entanglement assisted codes
over the p=0.15 depolarising channel for three different error
probabilities.
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