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For uniform source Sy (Pr(W = w|Sy) = 1/M):
Average input pa = 57 Zf\le p(w)a.

Error probability e = Pr(W # W|&, Z,Sur).
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> MPE(p,E) denotes largest size of entanglement-assisted code

with average input p and error probability € for £.

» ME(E) = max, ME(p, €)

> Mc(p,E) and M.(E) denote the corresponding quantities for
unassisted codes (1B, separable).

» For a channel £ = (£™),,¢en, where E™ is CPTP map for n
channel uses (taking states of A™ to states of B"):
CE(&) = lime_olimp oo £ log ME(E™)
» Asymptotics: For channels with i.i.d. uses £" = £%":
» CE(E) has single letter BSST formula
(arXiv:quant-ph/0106052).
» C(&) is regularised Holevo bound.
» Both reduce to Shannon capacity formula for classical
channels.



Background and motivation

Converse and achievability bounds! on the rate 1 log M(€™)
when € = 1/1000 and & is the BSC with Pr(bit flip) = 0.11.
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» Datta & Hsieh (arXiv:1105.3321) give converse (and
achievability) for MF(&), but it has some disadvantages
(diverges as € — 0; not clear how to compute).

» Polyanskiy—Poor-Verdu gives a classical converse which
relates coding to hypothesis testing. It is simple, and powerful
enough to derive many important classical converse bounds,
so we want a quantum generalisation.

» The converse in Wang & Renner (arXiv:1007.5456) for M.(E)
is almost such a generalisation for unassisted codes (see also
Hayashi's book).

» We obtain a hierarchy of bounds based on quantum
hypothesis testing of a bipartite system with restricted
measurements, including a novel converse for EA codes, and a
generalisation of Wang-Renner converse for unassisted codes.
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Background: Quantum hypothesis testing

Hy: State is 79. Hy: State is 7.

Test T' for Hy: The element of a binary POVM {T',1 — T'}
for the outcome “accept Hy".

a(T) :=Pr(reject Hy|T, Hp) =1 —TrryT  (false negative),
B(T) :=Pr(accept Hy|T, H;) = Trrny T (false positive).

For a class of tests £2 we define

/8?(7-077—1) = ¥11g ﬂ(Ta Tl)? SUbjeCt to O[(T7 TO) <e
€
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» LC1: One-way communication from Alice to Bob.
» PPT: 0 <TI'p[Txz] < 1.
» ALL: All tests. Symbol omitted e.g. 3. = AL,

LcCcLC1cCcPPTCALL.
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H;i: State is p;goB

o: Stateis {p; €}z
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o o(Txp) =1 —Tr{p;E};5T55 = €
For a CPTP map F with constant output o
the success probability is 1/M, so
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-1
M < BR(p, €) = (max 52 ({p: €}, £ 0m)
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The main bounds

—1
B(p,€) := (max 52({; €} 35, A3 m))

Defining BS(E) := max, B%(p, ) we have:
For entanglement-assisted codes: M (p, &) < Bc(p,&), and

ME(E) < B(€);

For unassisted codes: Since these map to local tests, for any class
Q containing L, M.(p,&) < B%(p, &), and

M.(€) < BE(&).
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e They reduce to the PPV converse for classical channels.
e Entanglement-assisted bound:

» Can recover converse part of BSST.

» B.(E)~!is given by an SDP which generalises the linear
program formulation of the PPV converse (Matthews
arXiv:1109.5417)

e Bounds for unassisted codes:

» The upper bound for M,(€) in Wang-Renner
(arXiv:1007.5456) is equivalent to 2 = LC1 and fixing
o = &[p], which is no stronger than BL€1(€) and can be
worse.

» L bound can be stronger (but less nice in other ways).

» BLCL(E), and hence B (&) can recover Holevo bound (see
WR).

» BPPT(£)~1 is given by a semidefinite program (SDP).
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Properties of the bounds?

~1
B2(€) = (minmx 42((55€ ) 4 g 0)

> B2({p; €} ap» P50B) Is
» Concave in 0.
» Convex in p if LC1 C €.

» max, 3 ({p; E}xp, P50B) is also convex in p.
These properties allow simplification given symmetry:
» For a group covariant map Vg € G : S[ngUg] = Vgé’[p]‘/j,
we can restrict to group invariant p and o in the optimisations.

» For permutation covariant channels: Poly(n) size SDP for EA
converse (€2 = ALL).

2See Y. Polyanskiy’s study of classical bound on his website. To appear in
IEEE Trans. Inf. T.
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Example: EA coding over the depolarising channel

» d-dimensional depolarising channel:
Dlr] = (1—p)7 +pTr(7)p,
where p = 1/d is the maximally mixed state.

» D" has the covariance group S,, x U(d)*"

» Only G invariant p and o are the maximally mixed states.

> {u® DO} = ¢(p)®" where ¢(p) := (1 — p)ozp + PUzLB.
where ¢ is the U ® U* invariant maximally entangled state.

> ME(D®") < Be(€) = Be((0(0)™) npn | (12™) g (1)) !

» Since the arguments commute, and there are only two distinct
eigenvalues (eigenprojectors ¢ and 1 — ¢), the problem is

equivalent to classical hypothesis testing between two
differently biased coins, based on n tosses.



Example: EA coding over the depolarising channel

bit rate
14 &
1.2 e=0.1
1.0

e=0.01
0.8
0.6 €=0.001
04 — Capacity
0.2

L S T R N S H A T S S E | n
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Figure: The upper bound on the rate for entanglement assisted codes
over the p=0.15 depolarising channel for three different error
probabilities.
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Summary and outlook
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We have generalised a powerful converse for classical channel
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