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Quantum Hypothesis Testing

Theory A Theory B
(Established Theory) (New Theory)

Null Hypothesis Alternate Hypothesis
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Theory A predicts that Theory B predicts that
System is in state ρ. System is in state σ.
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Quantum Hypothesis Testing

Null Hypothesis: ρ; Alternate Hypothesis: σ.

Devise a test, a POVM {Q, 1− Q} with 0 ≤ Q ≤ 1.
If Q clicks, you accept the null hypothesis.

Define the error of the first and second kind,

α(Q) = tr(ρ(1−Q)) and β(Q) = tr(σQ) .

The error of the second kind, β, validates the null hypothesis even
though the alternate hypothesis is correct.
This is undesirable—you will reject the theory and not write a paper.
The error of the first kind, α, validates the alternate hypothesis even
though the null hypothesis is correct.
This is fatal—you will write a crackpot paper!
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Quantum Hypothesis Testing

We are interested in the minimal β that can be achieved if α is
required to be smaller than a given constant, ε, i.e. the SDP

βερ,σ := min
0≤Q≤1
α(Q)≤ε

β(Q) = min
0≤Q≤1

tr(ρQ)≥1−ε

tr(σQ).

Alternatively, one may consider the exponent of β, the divergence

Dε
h(ρ‖σ) := − log

(
βερ,σ
1− ε

)
, 0 < ε < 1.

The additive normalization log(1− ε) ensures (Dupuis+’12)

Dε
h(ρ‖σ) ≥ 0 and Dε

h(ρ‖σ) = 0 ⇐⇒ ρ = σ.

It also satisfies data-processing, Dε
h(ρ‖σ) ≥ Dε

h

(
E(ρ)

∥∥E(σ)
)
.
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I.i.d. Asymptotic Expansion of Dε
h

We consider n independent repetitions of the experiment, i.e. the
states ρ⊗n and σ⊗n.

A quantum generalization of Stein’s Lemma (Hiai&Petz’91) and its
strong converse (Ogawa&Nagaoka’00) imply

Dε
h
(
ρ⊗n∥∥σ⊗n) = nD(ρ‖σ) + o(n).

This was recently improved (Audenaert,Mosonyi&Verstraete’12)

Dε
h
(
ρ⊗n∥∥σ⊗n) ≤ nD(ρ‖σ) + O

(√
n
)

and
Dε

h
(
ρ⊗n∥∥σ⊗n) ≥ nD(ρ‖σ)− O

(√
n
)
.

by giving explicit upper and lower bounds. However, the terms
proportional to

√
n in the upper and lower bounds are different.

(They do not have the same sign!)
Our goal is to investigate the second order term, O(

√
n).
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Main Result

Theorem
For two states ρ, σ with supp{σ} ⊇ supp{ρ}, and 0 < ε < 1, we find

Dε
h(ρ⊗n‖σ⊗n) ≤ nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε) + 2 log n + O(1), and

Dε
h(ρ⊗n‖σ⊗n) ≥ nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε)− O(1).

D and V are the mean and variance of log ρ− log σ under ρ, i.e.

V (ρ‖σ) := tr
(
ρ
(
log ρ− log σ − D(ρ‖σ)

)2)
.

Φ is the cumulative normal distribution function, and Φ−1(ε) is

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

1

2

3

.
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We also have bounds on the constant terms, enabling us to calculate
upper and lower bounds on Dε

h(ρ⊗n‖σ⊗n) for finite n.

Classically, the result is known to hold with both logarithmic terms
equal to 1

2 log n (e.g. Strassen’62,Polyanskiy,Poor&Verdú’10).
One ingredient of both proof is the Berry-Essèen theorem, which
quantizes the convergence of the distribution of a sum of i.i.d. random
variables to a normal distribution.
Intuitively, our results can be seen as a quantum, entropic formulation
of the central limit theorem.

15



Main Result

Theorem
For two states ρ, σ with supp{σ} ⊇ supp{ρ}, and 0 < ε < 1, we find

Dε
h(ρ⊗n‖σ⊗n) ≤ nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε) + 2 log n + O(1), and

Dε
h(ρ⊗n‖σ⊗n) ≥ nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε)− O(1).

We also have bounds on the constant terms, enabling us to calculate
upper and lower bounds on Dε

h(ρ⊗n‖σ⊗n) for finite n.
Classically, the result is known to hold with both logarithmic terms
equal to 1

2 log n (e.g. Strassen’62,Polyanskiy,Poor&Verdú’10).

One ingredient of both proof is the Berry-Essèen theorem, which
quantizes the convergence of the distribution of a sum of i.i.d. random
variables to a normal distribution.
Intuitively, our results can be seen as a quantum, entropic formulation
of the central limit theorem.

16



Main Result

Theorem
For two states ρ, σ with supp{σ} ⊇ supp{ρ}, and 0 < ε < 1, we find

Dε
h(ρ⊗n‖σ⊗n) ≤ nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε) + 2 log n + O(1), and

Dε
h(ρ⊗n‖σ⊗n) ≥ nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε)− O(1).

We also have bounds on the constant terms, enabling us to calculate
upper and lower bounds on Dε

h(ρ⊗n‖σ⊗n) for finite n.
Classically, the result is known to hold with both logarithmic terms
equal to 1

2 log n (e.g. Strassen’62,Polyanskiy,Poor&Verdú’10).
One ingredient of both proof is the Berry-Essèen theorem, which
quantizes the convergence of the distribution of a sum of i.i.d. random
variables to a normal distribution.
Intuitively, our results can be seen as a quantum, entropic formulation
of the central limit theorem.

17



Smooth Entropies

We also investigate the smooth min-entropy (Renner’05), where it was
known (T,Colbeck&Renner’09) that

Hε
min(An|Bn)ρ⊗n ≤ nH(A|B)ρ + O

(√
n
)
, and

Hε
min(An|Bn)ρ⊗n ≥ nH(A|B)ρ − O

(√
n
)
.

We derive the following expansion

Hε
min(An|Bn)ρ⊗n ≤ nH(A|B)ρ +

√
nV (A|B)ρ Φ−1(ε2) + O(log n),

Hε
min(An|Bn)ρ⊗n ≥ nH(A|B)ρ +

√
nV (A|B)ρ Φ−1(ε2)− O(log n),

where H(A|B)ρ = D(ρAB‖1A⊗ ρB) and V (A|B)ρ = V (ρAB‖1A⊗ ρB).
Both hypothesis testing and smooth entropies have various
applications in information theory, some of which we explore next.
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Randomness Extraction against Side Information

Consider a CQ random source that outputs states
ρXE =

∑
x px |x〉〈x | ⊗ ρx

E .
Investigate the amount of randomness that can be extracted from X
such that it is independent of E and the random seed, S .

A protocol P : XS → ZS extracts a random number Z from X ,
producing a state τZES when applied to ρXE ⊗ ρS .
For any 0 ≤ ε < 1 and ρXE a CQ state, we define

`ε(X |E ) := max
{
` ∈ N

∣∣ ∃P, σE : |Z | = 2` ∧ τZES ≈ε 2−`1Z ⊗ σE ⊗ τS
}
.

This quantity can be characterized in terms of the smooth
min-entropy (Renner’05). We tighten this and show

Theorem
Consider an i.i.d. source ρXnEn = ρ⊗n

XE and 0 < ε < 1. Then,

`ε(X n|En) = nH(X |E ) +
√

nV (X |E )Φ−1(ε2)± O(log n).
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Data Compression with Side Information

Consider a CQ random source that outputs states
ρXB =

∑
x px |x〉〈x | ⊗ ρx

B .
Find the minimum compression length of X if quantum side
information B is available at the decoder.

A protocol P encodes X into M and then produces an estimate X ′ of
X from B and M.
For any 0 ≤ ε < 1 and ρXB a CQ state, we define

mε(X |B)ρ := min
{
m ∈ N

∣∣∃P : |M| = 2m ∧ P[X 6= X ′] ≤ ε
}
.

This quantity can be characterized using hypothesis testing
(H&Nagaoka’04). We tighten this and show

Theorem
Consider an i.i.d. source ρXnBn = ρ⊗n

XB and 0 < ε < 1. Then,

mε(X n|Bn) = nH(X |B)−
√

nV (X |B)Φ−1(ε)± O(log n).
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Example of Second Order Asymptotics

Consider transmission of |0〉, |1〉 through a Pauli channel to B (phase
and bit flip independent) with environment E. This yields the states

ρXB =
1
2

∑
|x〉〈x | ⊗

(
(1−p)|x〉〈x |+ p|1−x〉〈1−x |

)
,

ρXE =
1
2

∑
|x〉〈x | ⊗ |φx〉〈φx |, |φx〉 =

√
p|0〉+ (−1)x

√
1−p|1〉.
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Plot of first and second order asymptotic approximation of 1
n`
ε(X |E )

and 1
nm

ε(X |B) for p = 0.05 and ε = 10−6.
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Example of Finite Block Length Bounds
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Different Layers of Approximation

Class Role Quantities
Class 1 Optimal performance of protocol. mε(X |B)ρ

Calculation is very difficult. `ε(X |B)ρ,
Class 2 One-shot bound for general source. Hε

h(A|B)ρ,
SDP tractable for small systems. Hε

min(A|B)ρ
Class 3 Quantum information spectrum. Dε

s (ρ‖σ)

Class 4 Classical information spectrum. Dε
s (P0,ρ,σ‖P1,ρ,σ)

Approximately possible for i.i.d.
Class 5 Second order asymptotics. nH(X |B)+

Calculation is easy for large n.
√
n s(X |B)Φ−1(ε)

Classes Difference Method
1 → 2 O(log n) Random coding and monotonicity.
2 → 4 O(log n) Relations between entropies.
4 → 5 O(1) Berry-Essèen Theorem.
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Conclusion / Differences & Overlap

The methods employed in the two papers are conceptually different.
The approach employed by Li is more direct, leads to tighter bounds
for finite n and better coefficients for the logarithmic term.
The approach of T&H is more general.

Result T&H Li
2nd order asymptotics for hypothesis testing X X
Finite n bounds for hypothesis testing X X
2nd order asymptotics of smooth min-entropy X
Application to data compression and randomness
extraction with quantum side information X
Hierarchy of information quantities, linking
operational quantities, one-shot entropies and
asymptotic analysis of quantum tasks X
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Open Questions

There is a difference of 2 log n between the current upper and lower
bounds on Dε

h(ρ⊗n‖σ⊗n). Is this fundamental, i.e. do there exist ρ and
σ for which these bounds are tight? Or can this be further improved?
(Classically, the upper and lower bounds only differ in the constant.)

What about more general states, e.g. if only one state is i.i.d. or
permutation symmetric states?

Thank you for your attention.
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