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Quantum Hypothesis Testing

Theory A Theory B
(Established Theory) (New Theory)
Null Hypothesis Alternate Hypothesis
Theory A predicts that Theory B predicts that

System is in state p. System is in state o.
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@ Devise a test, a POVM {Q,1 — Q} with0 < Q < 1.
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Null Hypothesis: p; Alternate Hypothesis: o.

@ Devise a test, a POVM {Q,1 — Q} with0 < Q < 1.
@ If Q clicks, you accept the null hypothesis.
o Define the error of the first and second kind,

a(Q) =tr(p(1-Q)) and B(Q) =tr(0Q).

@ The error of the second kind, 3, validates the null hypothesis even
though the alternate hypothesis is correct.
This is undesirable — you will reject the theory and not write a paper.
@ The error of the first kind, «, validates the alternate hypothesis even
though the null hypothesis is correct.
This is fatal —you will write a crackpot paper!



Quantum Hypothesis Testing

@ We are interested in the minimal 3 that can be achieved if « is
required to be smaller than a given constant, ¢, i.e. the SDP
o= min B(Q)=min tr(cQ).
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Quantum Hypothesis Testing

@ We are interested in the minimal 3 that can be achieved if « is
required to be smaller than a given constant, ¢, i.e. the SDP

o
pr = o000 Q= o, w(oQ)
a(Q)<e tr(pQ)>1—¢

@ Alternatively, one may consider the exponent of 3, the divergence

€

Di(pllo) := —log (1'0_’05), 0<e<l.

@ The additive normalization log(1 — ¢) ensures (Dupuis+'12)
Di(plle) =0 and Di(pllo) =0 <= p—o.

o It also satisfies data-processing, D;(pllo) > D;(£(p)||E(0)).



l.i.d. Asymptotic Expansion of Dj

@ We consider n independent repetitions of the experiment, i.e. the
states p®" and o®".
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@ A quantum generalization of Stein's Lemma (Hiai&Petz'91) and its
strong converse (Ogawa&Nagaoka'00) imply
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l.i.d. Asymptotic Expansion of D,

@ We consider n independent repetitions of the experiment, i.e. the
states p®" and o®".

@ A quantum generalization of Stein's Lemma (Hiai&Petz'91) and its
strong converse (Ogawa&Nagaoka'00) imply

Di (p®"HU®") = nD(pl||o) + o(n).
@ This was recently improved (Audenaert,Mosonyi&Verstraete'12)

D,f(p®”Ha®") < nD(pllo) + O(v/n) and
D5 (p%"||e®") = nD(pllor) — O(v/n).

by giving explicit upper and lower bounds. However, the terms
proportional to y/n in the upper and lower bounds are different.
(They do not have the same sign!)

@ Our goal is to investigate the second order term, O(+/n).
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Main Result

For two states p, o with supp{o} D supp{p}, and 0 < e < 1, we find
Di(p®"|0®") < nD(pllo) + /nV (pllo)®~ (e) + 2log n+ O(1),  and
Di(p®"|o®") = nD(pllo) + v/nV (pllo)®~*(e) — O(1).

@ D and V are the mean and variance of log p — log o under p, i.e.

V(pllo) := tr(p(log p — log o — D(pl|0))?).

o ® is the cumulative normal distribution function, and ®~1(¢) is
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Main Result

For two states p, o with supp{c} D supp{p}, and 0 < e < 1, we find
Di(p®"lo®") < nD(pllo) + /nV(pllo)®7 () + 2log n + O(1),  and
Di(p®"lo®") = nD(pllo) + /nV(p]lo)®~ (e) — O(1).

@ We also have bounds on the constant terms, enabling us to calculate
upper and lower bounds on Dj(p®"||c®") for finite n.

@ Classically, the result is known to hold with both logarithmic terms
equal to % log n (e.g. Strassen'62,Polyanskiy,Poor&Verdi'10).

@ One ingredient of both proof is the Berry-Esséen theorem, which
quantizes the convergence of the distribution of a sum of i.i.d. random
variables to a normal distribution.

@ Intuitively, our results can be seen as a quantum, entropic formulation
of the central limit theorem.
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Smooth Entropies

@ We also investigate the smooth min-entropy (Renner'05), where it was
known (T,Colbeck&Renner'09) that

A"|B") on < nH(A|B), + O(v/n), and
AIB™) en > nH(A|B), — O(v/n).

mln(

mln(
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@ We derive the following expansion
HE

min(A"IB™) jen < nH(A|B), +1/nV(A[B), ) + O(log n),
Hein(A"|B™) jen > nH(A|B), + 1/ nV(A|B), O(log n),

where H(A|B), = D(pag||1a® pg) and V(A|B), = V(pag|[la® ps).
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Smooth Entropies

@ We also investigate the smooth min-entropy (Renner'05), where it was
known (T,Colbeck&Renner'09) that

A"|B") on < nH(A|B), + O(v/n), and
AIB™) en > nH(A|B), — O(v/n).

mln(
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@ We derive the following expansion
HE

min(A"1B™) jen < nH(A|B), nV(A|B), ) + O(log n),
Hein(A"|B") jen > nH(A|B), + \/nV(A|B), O(log n),

where H(A|B), = D(pag||1a® pg) and V(A|B), = V(pag|[la® ps).

@ Both hypothesis testing and smooth entropies have various
applications in information theory, some of which we explore next.
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Randomness Extraction against Side Information

o Consider a CQ random source that outputs states
PXE = Dy Px|X)(X| ® pE.

@ Investigate the amount of randomness that can be extracted from X
such that it is independent of E and the random seed, S.
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Randomness Extraction against Side Information

o Consider a CQ random source that outputs states
PXE = Dy Px|X)x| @ pE.

@ Investigate the amount of randomness that can be extracted from X
such that it is independent of E and the random seed, S.

@ A protocol P : XS — ZS extracts a random number Z from X,
producing a state 7zgs when applied to pxg ® ps.

@ Forany 0 <e <1 and pxe a CQ state, we define

(°(X|E) :=max {¢{ € N| 3P, 0 : |Z| = 2¢ A Tzes ~F 270, ® 0 ®Ts }.

@ This quantity can be characterized in terms of the smooth
min-entropy (Renner'05). We tighten this and show

Consider an i.i.d. source pxngn = pf and 0 < e < 1. Then,

(5(X"|E™) = nH(X|E) + \/nV(X|E)®}(?) £ O(log n).
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Data Compression with Side Information

@ Consider a CQ random source that outputs states
PXB = D PxIX)x| ® p.

@ Find the minimum compression length of X if quantum side
information B is available at the decoder.

25



Data Compression with Side Information

@ Consider a CQ random source that outputs states
PXB = D PxIX)x| ® p.

@ Find the minimum compression length of X if quantum side
information B is available at the decoder.

@ A protocol P encodes X into M and then produces an estimate X’ of
X from B and M.

26



Data Compression with Side Information

@ Consider a CQ random source that outputs states
PXB = D PxIX)x| ® p.

@ Find the minimum compression length of X if quantum side
information B is available at the decoder.

@ A protocol P encodes X into M and then produces an estimate X’ of
X from B and M.
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Data Compression with Side Information

@ Consider a CQ random source that outputs states
PxB = Dy Px[X)}x| ® p.

@ Find the minimum compression length of X if quantum side
information B is available at the decoder.

@ A protocol P encodes X into M and then produces an estimate X’ of
X from B and M.

@ Forany 0 <e < 1and pxg a CQ state, we define
m®(X|B), := min{m € N}EIP (M| =2"APIX # X'] <€}

@ This quantity can be characterized using hypothesis testing
(H&Nagaoka'04). We tighten this and show

Consider an i.i.d. source pxngn = pSp and 0 < ¢ < 1. Then,

m®(X"|B") = nH(X|B) — v/nV(X|B)®(e) £ O(log n).
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Example of Second Order Asymptotics

o Consider transmission of |0), |1) through a Pauli channel to B (phase
and bit flip independent) with environment E. This yields the states

pxe = 5 3 I © ((1-p)bx)ix] + pl1—x)(1 ).

pxe = 3 YOI @ 16U 16%) = IO} + (1) Tpl),
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Example of Second Order Asymptotics

o Consider transmission of |0), |1) through a Pauli channel to B (phase
and bit flip independent) with environment E. This yields the states

pxe = 5 3 I © ((1-p)bx)ix] + pl1—x)(1 ).

pxe = 3 YOI @ 16U 16%) = IO} + (1) Tpl),
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o Plot of first and second order asymptotic approximation of ¢<(X|E)
and £m*(X|B) for p=0.05 and £ = 107°.
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Example of Finite Block Length Bounds

[ —
i

-----
______

Ist order |
2nd order
converse bound

____________ direct bound 0.66-

10° 10° 107
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Different Layers of Approximation

Class Role Quantities

Class 1 | Optimal performance of protocol. m®(X|B),
Calculation is very difficult. 5(X|B),,

Class 2 | One-shot bound for general source. | H;(A|B),,
SDP tractable for small systems. H:..(AB),

Class 3 | Quantum information spectrum. Di(pllo)

Class 4 | Classical information spectrum. D:(Po,p,l|P1p,o)
Approximately possible for i.i.d.

Class 5 | Second order asymptotics. nH(X|B)+
Calculation is easy for large n. Vns(X|B)d~1(e)

Classes | Difference | Method

1—2 | O(logn) | Random coding and monotonicity.
2 =4 | O(logn) | Relations between entropies.
4—5 | 0(1) Berry-Esséen Theorem.
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Conclusion / Differences & Overlap

@ The methods employed in the two papers are conceptually different.

@ The approach employed by Li is more direct, leads to tighter bounds
for finite n and better coefficients for the logarithmic term.

@ The approach of T&H is more general.

Result T&H | Li
2nd order asymptotics for hypothesis testing v v
Finite n bounds for hypothesis testing v v
2nd order asymptotics of smooth min-entropy v

Application to data compression and randomness
extraction with quantum side information
Hierarchy of information quantities, linking
operational quantities, one-shot entropies and
asymptotic analysis of quantum tasks v

«\
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Open Questions

@ There is a difference of 2 log n between the current upper and lower
bounds on D;(p®"||c®"). Is this fundamental, i.e. do there exist p and
o for which these bounds are tight? Or can this be further improved?
(Classically, the upper and lower bounds only differ in the constant.)
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Open Questions

@ There is a difference of 2 log n between the current upper and lower
bounds on D;(p®"||c®"). Is this fundamental, i.e. do there exist p and
o for which these bounds are tight? Or can this be further improved?
(Classically, the upper and lower bounds only differ in the constant.)

@ What about more general states, e.g. if only one state is i.i.d. or
permutation symmetric states?

Thank you for your attention.
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