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Constraint Satisfaction Problems
k-arity CSP:
Variables {x,, ..., x,,} in 2"
Alphabet >

Constraints {c;};

c.: 2" —={0,1}

J

Unsat := I)}élzlr}ch(xh“"xjk)

J

Include 3SAT, max-cut, vertex cover, ...
NP-complete to compute Usant



Constraint Satisfaction Problems

...as an eigenvalue problem

Hamiltonian H = i(}j & (Rd)®n, d= ‘2‘

=1

Local Terms Cj3= E ‘219”°’Zk><zl""’zk‘

2€3k:c;(2)=1
Unsat = minimum eigenvalue of H

(Hamiltonian for classical spins: Ising model, Pott’s model)



Quantum CSPs, aka Local
Hamiltonians

k-local Hamiltonian: H = iHi < (Cd)®n
i=1

Local Terms: H. = Hilr"’ik ®I,,, H o S Herm(C®k)

rest? |

qUnsat = E,(H): E, : minimum eigenvalue

Optimal assignment: Groundstate of the model

How hard are qCSP?

Quantum Hamiltonian Complexity addresses this question



The Local Hamiltonian Problem

Problem
Given a local Hamiltonian H, decide if E;(H)=0 or E,(H)>A

E,(H) : minimum eigenvalue of H



The Local Hamiltonian Problem

Problem
Given a local Hamiltonian H, decide if E;(H)=0 or E,(H)>A

E,(H) : minimum eigenvalue of H

Thm (Kitaev ‘99) The local Hamiltonian problem is QMA-
complete for A = 1/poly(n)

(analogue Cook-Levin thm)

QMA is the guantum analogue
of NP, where the proof and the
computation are quantum

Input Witness



The meaning of it

It’s believed QMA # NP

Thus there is generally no efficient classical description of
groundstates of local Hamiltonians

(Even very simple models are QMA-complete
(Aharonov, Gottesman, Irani, Kempe ‘07) 1D,
(Oliveira, Terhal ‘05) 2D on qubits, ...)
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It’s believed QMA # NP

Thus there is generally no efficient classical description of
groundstates of local Hamiltonians

(Even very simple models are QMA-complete
(Aharonov, Gottesman, Irani, Kempe ‘07) 1D,
(Oliveira, Terhal ‘05) 2D on qubits, ...)

What's the role of the promise gap A on the hardness?

.... But first, what happens for CSP?



PCP Theorem
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PCP Theorem

PCP Theorem (Arora et al ’98, Dinur ‘07): There is a € > 0 s.t.
it’s NP-complete to determine whether for a CSP with m
constraints, Unsat = 0 or Unsat > em

NP-hard even for A=Q(m)

Equivalent to the existence of Probabilistically Checkable Proofs
for NP.

Central tool in the theory of hardness of approximation
(optimal threshold for 3-SAT (7/8-factor), max-clique (n'*-factor))



Quantum PCP?

The qPCP conjecture: There is € > 0 s.t. the following problem is
QMA-complete: Given 2-local Hamiltonian H with m local terms
determine whether

(i) E,(H)=0 or (ii) E5(H) > em.




Quantum PCP?

The qPCP conjecture: There is € > 0 s.t. the following problem is
QMA-complete: Given 2-local Hamiltonian H with m local terms
determine whether

(i) E,(H)=0 or (ii) E5(H) > em.

- (Brawyi, DiVincenzo, Loss, Terhal ‘08) Equivalent to conjecture for
O(1)-local Hamiltonians over qgdits.




Quantum PCP?

The qPCP conjecture: There is € > 0 s.t. the following problem is
QMA-complete: Given 2-local Hamiltonian H with m local terms
determine whether

(i) E,(H)=0 or (ii) E5(H) > em.

- (Brawyi, DiVincenzo, Loss, Terhal ‘08) Equivalent to conjecture for
O(1)-local Hamiltonians over qgdits.

- Equivalent to estimating mean groundenergy to constant
accuracy (e (H) := E5(H)/m)




Quantum PCP?

The qPCP conjecture: There is € > 0 s.t. the following problem is
QMA-complete: Given 2-local Hamiltonian H with m local terms
determine whether

(i) E,(H)=0 or (ii) E5(H) > em.

- (Brawyi, DiVincenzo, Loss, Terhal ‘08) Equivalent to conjecture for
O(1)-local Hamiltonians over qgdits.

- Equivalent to estimating mean groundenergy to constant
accuracy (e (H) := E5(H)/m)

- And to estimate the energy at constant temperature




Quantum PCP?

The qPCP conjecture: There is € > 0 s.t. the following problem is
QMA-complete: Given 2-local Hamiltonian H with m local terms
determine whether

(i) E,(H)=0 or (ii) E5(H) > em.

- (Brawyi, DiVincenzo, Loss, Terhal ‘08) Equivalent to conjecture for
O(1)-local Hamiltonians over qgdits.

- Equivalent to estimating mean groundenergy to constant
accuracy (e (H) := E5(H)/m)

- And to estimate the energy at constant temperature

- At least NP-hard (by PCP Thm) and in QMA




Quantum PCP?

NP

QMA



Previous Work and Obstructions

(Aharonov, Arad, Landau, Vazirani ‘08)
Quantum version of 1 of 3 parts of Dinur’s proof of the PCP
thm (gap amplification)

But: The other two parts (alphabet and degree reductions)
involve massive copying of information; not clear how to do it
with a highly entangled assignment



Previous Work and Obstructions

(Aharonov, Arad, Landau, Vazirani ‘08)
Quantum version of 1 of 3 parts of Dinur’s proof of the PCP
thm (gap amplification)

But: The other two parts (alphabet and degree reductions)
involve massive copying of information; not clear how to do it
with a highly entangled assignment

(Bravyi, Vyalyi '03; Arad "10; Hastings ’12; Freedman, Hastings '13;
Aharonov, Eldar’13, ...)

No-go for large class of commuting Hamiltonians and almost
commuting Hamiltonians

But: Commuting case might always be in NP
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graph G(V, E) and |E| local terms.
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Approximation in NP

(B., Harrow ‘12) Let H be a 2-local Hamiltonian on qudits with interaction

graph G(V, E) and |E| local terms.

Let {X.} be a partition of the sites with each X. having m sites.

Then there are products states U, in X; s.t.

é<¢l,...,wm‘H‘wl,...,zpm> <e (H)+Q

d°E D(

X)

l

1

E. : expectation over X
deg(G) : degree of G

D(X;) :expansion of X
S(X;) :entropy of

groundstate in X,




Approximation in NP

(B., Harrow ‘12) Let H be a 2-local Hamiltonian on qudits with interaction
graph G(V, E) and |E| local terms.

Let {X.} be a partition of the sites with each X. having m sites.
Then there are products states |, in X, s.t.
1 S, ))

|E|<w1, Y, | H W, ) < €, (H) +Q =0 m

dED(X))

E,  expectatior Approximation in terms of 3 parameters:

deg(G) : degree of ( X,
D(X;) :expansion
S(X;) :entropy of

groundstat

1. Average expansion
2. Degree interaction graph
3. Average entanglement groundstate



1. Approximation in terms of average
expansion

..... Y, |H e, ) s e, (H)+Q| d
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1. Approximation in terms of average
expansion

..... Y, |H e, ) s e, (H)+Q| d

|Eq)(X )‘ S(X))

— (v
| E| deg(G) ' m

Average Expansion: E®(X.)= E Pr (v@éXl.|uEXl.)

V)EE

Well known fact: % ‘s divide and conquer
i
TR TR TR R TR

J
! I
X1 X,

Potential hard instances must be based on highly expanding graphs



2. Approximation in terms of

degree
(Yoot | H |thysnp, ) s €, (H) + Q| d°ED(X)

1
|E|

1 S X 1/8
75X
deg(G) ' m

More surprising, no classical analogue:

(PCP + parallel repetition) For all a, 3, y > 0 it’s NP-complete
to determine whether a CSP Cis s.t.
Unsat = 0 or Unsat > a 2#/deg(G)Y

Parallel repetition: C-> C’ i. deg(G’) = deg(G)k
i, ¥ =3k
ii. Unsat(G’) > Unsat(G)

(Raz ‘00) even showed Unsat(G’) approaches 1 exponentially fast
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1
|E|

1 S X 1/8
75X
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More surprising, no classical analogue:

(PCP + parallel repetition) For all a, 3, y > 0 it’s NP-complete
to determine whether a CSP Cis s.t.
Unsat = 0 or Unsat > a 2#/deg(G)Y

Contrast: It’s in NP determine whether a Hamiltonian H is s.t
Eo(H)=0 or E4(H) > ad®4/deg(G)Y/®

Quantum generalizations of PCP and parallel repetition
cannot both be true (assuming QMA not in NP)




2. Approximation in terms of
degree

ﬁ@p---»'ﬂm Hy,...w, ) < e,(H)+Q| d°ED(X))

1 S X 1/8
75X
deg(G) ' m

More surprising, no classical analogue:

(PCP + parallel repetition) For all a, 3, y > 0 it’s NP-complete
to determine whether a CSP Cis s.t.
Unsat = 0 or Unsat > a 2#/deg(G)Y

Bound: O <% - Q(1/deg) implies

Highly expanding graphs (O -> 1/2) are not hard instances




2. Approximation in terms of
degree

...shows mean field becomes exact in high dim

1-D o—e—e—e—e——0 00-D

Rigorous justification to folklore
in condensed matter physics




3. Approximation in terms of average

entanglement
1/8
1 6 1 S(X)
— LY | H . <e (H)+Q|d"ED(X. E. ’
|E|<’/’1’ Y, [H e, ) < e (H) + X)) o F
The problem is in NP if entanglement of S(X)
groundstate satisfy a subvolume law: E,— " — = 0(1)

Connection of amount of
entanglement in groundstate
and computational
complexity of the model




Intuition: Monogamy of
Entanglement

Quantum correlations are non-shareable

e (-n) 2

Cannot be highly entangled
with too many neighbors




Tool: Information Theory

. Mutual Information

I(X:Y) =D(p,, |lp,®p,)

. Pinsker’s inequalitv

11, =y @ p ]

2In2

. Conditional Mutual Information
I(X:Y|2)=1I(X:YZ)-1(X:2)

. Chain Rule
I(X:Y..Y)=I(X:Y)+..+[(X:Y |Y..Y )
= [(X:Y |Y,...Y_)=log(Z)/k forsome t<k




Conditioning Decouples

|dea that almost works (c.f. Raghavendra-Tan ‘11)

Then there exists t<k such that
logd
k

1. Choose |, j,, ..., j,at random from {1, ..., n} :/'

E I(Z:Z |Z .7 )=
1,...,jt ! Ji N1 Jic1

l,]

2. Conditioning on subsystems j,, ..., j, causes error <k/n and
leaves a distribution g for which

logd whichimplies E I(Z.,Z) = n__logd
k i~qj 7 deg(G) k

- 1 n logd
1 \[2In2 deg(G) &k

EI(Z.Z), s

By Pinsker’s: £

1~Gj

qzl.zj —4; ® qu



Does it Work Quantumly?

Good news: Bad news:

- 1(A:B), I(A:B:C) still defined - Can’t condition on quantum info

- Pinsker, chain rule, etc - 1(A:B|C)=0 doesn’t imply p,gis
still hold close to separable in trace norm

- 1(A:B|C)=0 implies p,gq (Ibinson, Linden, Winter ‘08)
separable

Good news we can use

Informatinally-complete measurement M satisfies

d3llp-call, <l Mp) -Ma)ll,<ll p- ol



Proof Overview

. Measure £n qudits with M and condition on outcomes.
Incur error €.

. Most pairs of other qudits would have mutual
information < log(d) / € deg(G) if measured.

. Thus their state is within distance d(log(d) / € deg(G))*/?2
of product.

. Witness is a global product state. Total error s
e + d%(log(d) / € deg(G))V/2.
Choose € to balance these terms.

. General case follows by coarse graining sites (and a few
other tricks)



New Classical Algorithms for
Quantum Hamiltonians

Following same approach we also obtain polynomial time
algorithms for approximating the groundstate energy of

1. Planar Hamiltonians, improving on (Bansal, Bravyi, Terhal ‘07)
2. Dense Hamiltonians, improving on (Gharibian, Kempe ‘10)

3. Hamiltonians on graphs with low threshold rank, building on
(Barak, Raghavendra, Steurer ‘10)

In all cases we prove that a product state does a good job
(after coarse graining some of the sites) and use efficient
algorithms for CSPs (Baker ’94, Arora, Karger, Karpinski ‘95)

Similar techniques give new de Finetti thm for general quantum
states



Conclusions

Can approximate mean energy in terms of degree
and amount of entanglement: Monogamy of
entanglement in groundstates

Mean field exact in the limit of large dimensions

No-go against qPCP + “quantum parallel repetition’

Tools from information theory are useful

4



Open Questions

* Go beyond mean field

* |s there a meaningful notion of parallel repetition for
qCSP?

* Does every groundstate have subvolume
entanglement after constant-depth-circuit
renormalization?

* Find more classes of Hamiltonians with efficient
algorithms

 (dis)prove gPCP conjecture!



Thank you!



