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What is quantum nonlocality?

Figure: Alice and Bob measurements. Inputs: x and y, Outputs: a and
b. P(a, b|x,y) is the probability of obtaining the pair (a, b) when Alice
and Bob measure, respectively, with the input x and y.

We deal with the “probability distributions”

b=,
P = (P(a, b|x,y))f(’y:17,,_
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What is quantum nonlocality?

P = {P(a, b|x,y)}x,y:ab is a Classical prob. distribution
(P € L) if it is in the convex hull of the elements of the form

P(a, b|x,y) = P1(a|x)P2(b|y) for every x,y, a, b, where

Pi(alx) > 0 and Z Pi(a|x) =1 for every x (similar for P,).
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Quantum nonlocality: £ & Q.
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Why is quantum nonlocality interesting?

Fundamental and fascinating phenomenon!
IDEA: THEORY «~ EXPERIMENTAL DATA

It has many applications:
1. Device Independent Quantum Cryptography.
2. Generation of random numbers.
3. Interactive proof systems.
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How nonlocal is p? Define
Q, = {P={tr(E2® Flp)} : {EZ},{F?} POVMs.}

Then,

P

LV (p) > 1 for ever p. Moreover, p local < LV(p) = 1.
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We are interested in:

Behavior of LV/(p)... asymptotically ... at least for some
states...

IR
lon) = 75 1
Multiplicativity properties:

LV(p1 ® p2) = LV(p1)LV(p2) or not too different?

Superactivation of nonlocality:
Find a local state p such that LV (p®¥) > 1 for some k.



An upper bound for LV (p)

n
Theorem: Given any pure state [¢)) = Za;]/i>, o > we have
i=1

(i) < UB(10) = (Dar)

i=1

In particular, LV/(p) < n for every n dimensional quantum
state p.

Note that UB(|pn)) = n.
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The Bell inequality M(n) is a two-prover one-round game (in
particular it has positive coefficients).

In fact,
c‘(fgg;gg < LV(j4)) < UB(9))

for every n dimensional pure state [¢)) (even better!).
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A tighter upper bound

Theorem: For every n,

LV(len)) < D\/@.

This shows

n

CW < LV(Jen)) <D

g

logn

We cannot use UB(]))) as an accurate measure of LV(p).
We understand better the quantity LV (|¢n)).
Interesting part of the result: Proof
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How is this related with multiplicativity?

LV (|pn)®?) /
An easy proof of ————- > C'y/logn:
LV(l¢n))®

5
By the previous upper bound: (LV(]go,,>))5 < D°

n

(log n)?
On the other hand, applying the KV game we have

5 5

LV([n)®2) = LV(Jpps)) = € .

(log n%)? =¢ (5log n)?

Therefore,

LV(jpn)®s) _ CrP(logm)i
> — C'\/logn.
LV(|pp))® = D5n5(5 log n)? o8 n
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and let us denote {E]} and {F7} the corresponding POVMs.

Then,

k

P=tr(E]® F;T/®k) = )\ktr(E; & F;|90nk><90nk|) 4
Since G« has positive coefficients we know that

1 L nk (An)k
> = .
u)(G,,k)<G"k7 P)z CA (log nk)? CkQ(Iog n)2

LV(n®%) >



Consequences

Superactivation of quantum nonlocality:

J. Barrett showed that there exist local isotropic states

1 1
n = Aen){en| + (1 — )\)? for A > . Therefore,

Iilzn LV (n®*) = oc.



Consequences

Superactivation of quantum nonlocality:

J. Barrett showed that there exist local isotropic states
1 1

N = Algn){@n| + (1 = A)—= for A > —. Therefore,
n n

Iilr(n LV (n®k) = co.

Unbounded almost-superactivation of quantum nonlocality:

For every € > and § > 0 there exists a high enough n such
1

that 7 = \y|on) (@n] + (1 — Xy) 5 verifies that
n

LV(n) <1+e€ and LV(n®5) > 6.



Thank you very much!



