Weak multiplicativity for random quantum channels

Ashley Montanaro

Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

> arXiv:1112.5271 CMP, to appear

Maximum output *p*-norms

For a quantum channel $\mathcal{N} : \mathcal{B}(\mathbb{C}^{d_A}) \to \mathcal{B}(\mathbb{C}^{d_B})$, i.e. CPTP map, the maximum output *p*-norm of \mathcal{N} is

$$\|\mathcal{N}\|_{1 \to p} := \max\{\|\mathcal{N}(\rho)\|_p, \ \rho \ge 0, \ \mathrm{tr} \ \rho = 1\},$$

where $||X||_p := (\operatorname{tr} |X|^p)^{1/p}$ is the Schatten *p*-norm.

Maximum output *p***-norms**

For a quantum channel $\mathcal{N} : \mathcal{B}(\mathbb{C}^{d_A}) \to \mathcal{B}(\mathbb{C}^{d_B})$, i.e. CPTP map, the maximum output *p*-norm of \mathcal{N} is

$$\|\mathcal{N}\|_{1 \to p} := \max\{\|\mathcal{N}(\rho)\|_p, \ \rho \ge 0, \ \mathrm{tr} \ \rho = 1\},$$

where $||X||_p := (\operatorname{tr} |X|^p)^{1/p}$ is the Schatten *p*-norm.

The following is a reasonable conjecture:

Multiplicativity Conjecture [Amosov, Holevo and Werner '00] For any channels N_1 , N_2 , and any p > 1,

 $\|\mathcal{N}_1 \otimes \mathcal{N}_2\|_{1 \to p} = \|\mathcal{N}_1\|_{1 \to p} \|\mathcal{N}_2\|_{1 \to p}.$

Maximum output *p***-norms**

For a quantum channel $\mathcal{N} : \mathcal{B}(\mathbb{C}^{d_A}) \to \mathcal{B}(\mathbb{C}^{d_B})$, i.e. CPTP map, the maximum output *p*-norm of \mathcal{N} is

$$\|\mathcal{N}\|_{1 \to p} := \max\{\|\mathcal{N}(\rho)\|_p, \ \rho \ge 0, \ \mathrm{tr} \ \rho = 1\},$$

where $||X||_p := (\operatorname{tr} |X|^p)^{1/p}$ is the Schatten *p*-norm.

The following is a reasonable conjecture:

Multiplicativity Conjecture [Amosov, Holevo and Werner '00] For any channels N_1 , N_2 , and any p > 1,

 $\|\mathcal{N}_1 \otimes \mathcal{N}_2\|_{1 \to p} = \|\mathcal{N}_1\|_{1 \to p} \|\mathcal{N}_2\|_{1 \to p}.$

For any N_1 , N_2 , the \geq direction of this equality is immediate (just take a product input to $N_1 \otimes N_2$), but in general the \leq direction is far from immediate.

Why care about multiplicativity?

The multiplicativity conjecture would imply at least two "operational" conjectures:

Additivity conjecture

The Holevo capacity, entanglement of formation and minimum output von Neumann entropy are all additive.

QMA(2) parallel repetition conjecture

The success probability in quantum Merlin-Arthur proof systems with two provers can be amplified by parallel repetition.

• Studying $\|\mathcal{N}\|_{1 \to p}$ is equivalent to studying

$$H_p^{\min}(\mathcal{N}) := \frac{1}{1-p} \log \|\mathcal{N}\|_{1 \to p}^p,$$

the minimum output Rènyi *p*-entropy of \mathcal{N} .

• Studying $\|\mathcal{N}\|_{1 \to p}$ is equivalent to studying

$$H_p^{\min}(\mathcal{N}) := \frac{1}{1-p} \log \|\mathcal{N}\|_{1 \to p}^p,$$

the minimum output Rènyi *p*-entropy of \mathcal{N} .

• Multiplicativity of maximum output *p*-norms is equivalent to additivity of minimum output Rényi *p*-entropies.

• Studying $\|\mathcal{N}\|_{1 \to p}$ is equivalent to studying

$$H_p^{\min}(\mathcal{N}) := \frac{1}{1-p} \log \|\mathcal{N}\|_{1 \to p}^p,$$

the minimum output Rènyi p-entropy of \mathcal{N} .

- Multiplicativity of maximum output *p*-norms is equivalent to additivity of minimum output Rényi *p*-entropies.
- The minimum output von Neumann entropy H^{min}(N) is obtained by taking the limit p → 1.

• Studying $\|\mathcal{N}\|_{1 \to p}$ is equivalent to studying

$$H_p^{\min}(\mathcal{N}) := \frac{1}{1-p} \log \|\mathcal{N}\|_{1 \to p}^p,$$

the minimum output Rènyi *p*-entropy of \mathcal{N} .

- Multiplicativity of maximum output *p*-norms is equivalent to additivity of minimum output Rényi *p*-entropies.
- The minimum output von Neumann entropy H^{min}(N) is obtained by taking the limit p → 1.
- [Shor '03] showed that additivity of this quantity is equivalent to other additivity conjectures in quantum information theory, e.g.:
 - Additivity of Holevo capacity of quantum channels $(\max_{p_i,|v_i\rangle} H(\mathcal{N}(\sum_i p_i v_i)) - \sum_i p_i H(\mathcal{N}(v_i)))$
 - Additivity of entanglement of formation $(\min_{p_i, |v_i\rangle} \sum_i p_i H(\operatorname{tr}_B v_i))$

The QMA(2) parallel repetition conjecture

• For any quantum channel \mathcal{N} , $\mathcal{N}(\rho) = \operatorname{tr}_E V \rho V^{\dagger}$ for some isometry $V : \mathbb{C}^{d_A} \to \mathbb{C}^{d_B} \otimes \mathbb{C}^{d_E}$.

The QMA(2) parallel repetition conjecture

- For any quantum channel \mathcal{N} , $\mathcal{N}(\rho) = \operatorname{tr}_E V \rho V^{\dagger}$ for some isometry $V : \mathbb{C}^{d_A} \to \mathbb{C}^{d_B} \otimes \mathbb{C}^{d_E}$.
- Define the support function of the separable states

 $h_{\text{SEP}}(M) := \max_{\rho \in \text{SEP}} \operatorname{tr} M \rho,$

where SEP is the set of separable quantum states, i.e. states ρ which can be written as

$$\rho = \sum_i p_i \rho_i \otimes \sigma_i.$$

The QMA(2) parallel repetition conjecture

- For any quantum channel \mathcal{N} , $\mathcal{N}(\rho) = \operatorname{tr}_E V \rho V^{\dagger}$ for some isometry $V : \mathbb{C}^{d_A} \to \mathbb{C}^{d_B} \otimes \mathbb{C}^{d_E}$.
- Define the support function of the separable states

 $h_{\operatorname{SEP}}(M) := \max_{\rho \in \operatorname{SEP}} \operatorname{tr} M \rho,$

where SEP is the set of separable quantum states, i.e. states ρ which can be written as

$$\rho = \sum_i p_i \rho_i \otimes \sigma_i.$$

Fact

Let \mathbb{N} be a quantum channel with corresponding isometry V, and set $M = VV^{\dagger}$. Then

 $h_{\rm SEP}(M) = \|\mathcal{N}\|_{1\to\infty}.$

 h_{SEP} has a natural interpretation in terms of QMA(2) protocols.

• This is a computational model where a computationally bounded verifier (Arthur) wishes to solve a decision problem, given access to two unentangled "proofs" from Merlin A and Merlin B [Kobayashi et al '03].

 h_{SEP} has a natural interpretation in terms of QMA(2) protocols.

- This is a computational model where a computationally bounded verifier (Arthur) wishes to solve a decision problem, given access to two unentangled "proofs" from Merlin A and Merlin B [Kobayashi et al '03].
- The Merlins are all-powerful but Arthur cannot trust them.

- Consider a QMA(2) protocol with soundness error *s*, i.e. on inputs which Arthur should reject, for all proofs |ψ₁⟩, |ψ₂⟩, Arthur accepts with probability at most *s*.
- Let Arthur's measurement operator which corresponds to "reject" be *M*.

- Consider a QMA(2) protocol with soundness error *s*, i.e. on inputs which Arthur should reject, for all proofs |ψ₁⟩, |ψ₂⟩, Arthur accepts with probability at most *s*.
- Let Arthur's measurement operator which corresponds to "reject" be *M*.
- Then the maximum probability with which the Merlins can convince him to (incorrectly) accept is $h_{\text{SEP}}(M) = s$.

- Consider a QMA(2) protocol with soundness error *s*, i.e. on inputs which Arthur should reject, for all proofs |ψ₁⟩, |ψ₂⟩, Arthur accepts with probability at most *s*.
- Let Arthur's measurement operator which corresponds to "reject" be *M*.
- Then the maximum probability with which the Merlins can convince him to (incorrectly) accept is $h_{\text{SEP}}(M) = s$.
- So, if *h*_{SEP}(*M*^{⊗n}) = *h*_{SEP}(*M*)ⁿ, Arthur can simply repeat the protocol *n* times in parallel to achieve soundness error at most *s*ⁿ.

When	Who	What	How
2002	Werner & Holevo	<i>p</i> > 4.79	$\rho \mapsto \frac{1}{d-1} \left((\operatorname{tr} \rho) I - \rho^T \right)$

When	Who	What	How
2002	Werner & Holevo	<i>p</i> > 4.79	$\rho \mapsto \frac{1}{d-1} \left((\operatorname{tr} \rho) I - \rho^T \right)$
3/7/07	Winter	<i>p</i> > 2	Random unitary

When	Who	What	How
2002	Werner & Holevo	<i>p</i> > 4.79	$\rho \mapsto \frac{1}{d-1} \left((\operatorname{tr} \rho) I - \rho^T \right)$
3/7/07	Winter	<i>p</i> > 2	Random unitary
23/7/07	Hayden	1 < <i>p</i> < 2	Random subspace

When	Who	What	How
2002	Werner & Holevo	<i>p</i> > 4.79	$\rho \mapsto \frac{1}{d-1} \left((\operatorname{tr} \rho) I - \rho^T \right)$
3/7/07	Winter	<i>p</i> > 2	Random unitary
23/7/07	Hayden	1 < <i>p</i> < 2	Random subspace
Dec 07	Cubitt et al	$p \lesssim 0.11$	Random/explicit

When	Who	What	How
2002	Werner & Holevo	<i>p</i> > 4.79	$\rho \mapsto \frac{1}{d-1} \left((\operatorname{tr} \rho) I - \rho^T \right)$
3/7/07	Winter	<i>p</i> > 2	Random unitary
23/7/07	Hayden	1 < <i>p</i> < 2	Random subspace
Dec 07	Cubitt et al	$p \lesssim 0.11$	Random/explicit
2008	Hayden & Winter	<i>p</i> > 1	Random subspace

When	Who	What	How
2002	Werner & Holevo	<i>p</i> > 4.79	$\rho \mapsto \frac{1}{d-1} \left((\operatorname{tr} \rho) I - \rho^T \right)$
3/7/07	Winter	<i>p</i> > 2	Random unitary
23/7/07	Hayden	1 < <i>p</i> < 2	Random subspace
Dec 07	Cubitt et al	$p \lesssim 0.11$	Random/explicit
2008	Hayden & Winter	<i>p</i> > 1	Random subspace
2008	Hastings	H^{\min}	Random subspace

Unfortunately (?), the Multiplicativity Conjecture is false for all p > 1!

When	Who	What	How
2002	Werner & Holevo	<i>p</i> > 4.79	$\rho \mapsto \frac{1}{d-1} \left((\operatorname{tr} \rho) I - \rho^T \right)$
3/7/07	Winter	<i>p</i> > 2	Random unitary
23/7/07	Hayden	1 < <i>p</i> < 2	Random subspace
Dec 07	Cubitt et al	$p \lesssim 0.11$	Random/explicit
2008	Hayden & Winter	p > 1	Random subspace
2008	Hastings	H^{\min}	Random subspace
2009	Grudka et al	<i>p</i> > 2	Antisym. subspace

Further, for $p = \infty$ it's really, really false: If P_{anti} is the projector onto the antisymmetric subspace of $\mathbb{C}^d \otimes \mathbb{C}^d$,

$$h_{\text{SEP}}(P_{\text{anti}}) = \frac{1}{2}, \text{ but } h_{\text{SEP}}(P_{\text{anti}}^{\otimes 2}) \ge \frac{1}{2} \left(1 - \frac{1}{d}\right).$$

So we have an example of a channel \mathbb{N} such that

 $\|\mathfrak{N}^{\otimes 2}\|_{1\to\infty}\approx\|\mathfrak{N}\|_{1\to\infty}.$

What about $\|\mathcal{N}^{\otimes n}\|_{1\to\infty}$ for large *n*?

So we have an example of a channel $\ensuremath{\mathbb{N}}$ such that

 $\|\mathcal{N}^{\otimes 2}\|_{1\to\infty}\approx\|\mathcal{N}\|_{1\to\infty}.$

What about $\|\mathcal{N}^{\otimes n}\|_{1\to\infty}$ for large *n*?

• The following two extreme possibilities could be true:

 $\|\mathcal{N}^{\otimes n}\|_{1\to\infty} \stackrel{?}{\leqslant} \|\mathcal{N}\|_{1\to\infty}^{n/2}$

for all N; or there might exist a family of channels N such that there is **no** constant $\alpha > 0$ such that

 $\|\mathcal{N}^{\otimes n}\|_{1\to\infty} \leqslant \|\mathcal{N}\|_{1\to\infty}^{\alpha n}$

So we have an example of a channel $\ensuremath{\mathbb{N}}$ such that

 $\|\mathfrak{N}^{\otimes 2}\|_{1\to\infty}\approx\|\mathfrak{N}\|_{1\to\infty}.$

What about $\|\mathcal{N}^{\otimes n}\|_{1\to\infty}$ for large *n*?

• The following two extreme possibilities could be true:

 $\|\mathcal{N}^{\otimes n}\|_{1\to\infty} \stackrel{?}{\leqslant} \|\mathcal{N}\|_{1\to\infty}^{n/2}$

for all N; or there might exist a family of channels N such that there is **no** constant $\alpha > 0$ such that

 $\|\mathcal{N}^{\otimes n}\|_{1\to\infty} \leqslant \|\mathcal{N}\|_{1\to\infty}^{\alpha n}$

• If the first case is true, the largest possible violation of multiplicativity is quite mild, and a form of parallel repetition holds for quantum Merlin-Arthur games.

So we have an example of a channel $\ensuremath{\mathbb{N}}$ such that

 $\|\mathfrak{N}^{\otimes 2}\|_{1\to\infty}\approx\|\mathfrak{N}\|_{1\to\infty}.$

What about $\|\mathcal{N}^{\otimes n}\|_{1\to\infty}$ for large *n*?

• The following two extreme possibilities could be true:

 $\|\mathcal{N}^{\otimes n}\|_{1\to\infty} \stackrel{?}{\leqslant} \|\mathcal{N}\|_{1\to\infty}^{n/2}$

for all N; or there might exist a family of channels N such that there is **no** constant $\alpha > 0$ such that

 $\|\mathcal{N}^{\otimes n}\|_{1\to\infty} \leqslant \|\mathcal{N}\|_{1\to\infty}^{\alpha n}$

- If the first case is true, the largest possible violation of multiplicativity is quite mild, and a form of parallel repetition holds for quantum Merlin-Arthur games.
- If the second case is true, severe violations are possible and parallel repetition fails.

Weak multiplicativity

Definition

A quantum channel \mathbb{N} obeys weak *p*-norm multiplicativity with exponent α if, for all $n \ge 1$,

 $\|\mathcal{N}^{\otimes n}\|_{1\to p} \leqslant \|\mathcal{N}\|_{1\to p}^{\alpha n}.$

Today's message

Random quantum channels obey weak ∞ -norm multiplicativity!

Today's message

Random quantum channels obey weak ∞ -norm multiplicativity!

Main result (informal)

Let \mathbb{N} be a quantum channel whose corresponding subspace is a random dimension r subspace of $\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$. Then the probability that \mathbb{N} does not obey weak ∞ -norm multiplicativity with exponent 1/2 - o(1) is exponentially small in min{ r, d_A, d_B }.

Today's message

Random quantum channels obey weak ∞ -norm multiplicativity!

Main result (informal)

Let \mathbb{N} be a quantum channel whose corresponding subspace is a random dimension r subspace of $\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$. Then the probability that \mathbb{N} does not obey weak ∞ -norm multiplicativity with exponent 1/2 - o(1) is exponentially small in min{ r, d_A, d_B }.

Note: The above result holds with the following (fairly weak) restrictions on *r*, d_A , d_B :

- $r = o(d_A d_B)$.
- $\min\{r, d_A, d_B\} \ge 2(\log_2 \max\{d_A, d_B\})^{3/2}$.

Other *p* **and the von Neumann entropy**

This ∞ -norm result also implies similar results for other *p*-norms and the von Neumann entropy.

Other *p* **and the von Neumann entropy**

This ∞ -norm result also implies similar results for other *p*-norms and the von Neumann entropy.

By the (matrix) Hölder inequality, if N obeys weak
 ∞-norm multiplicativity with exponent α, N also obeys weak *p*-norm multiplicativity for any *p* > 1, with exponent α(1 − 1/*p*), via

 $||X||_{\infty} \leq ||X||_{p} \leq ||X||_{1}^{1/p} ||X||_{\infty}^{1-1/p}.$

Other *p* **and the von Neumann entropy**

This ∞ -norm result also implies similar results for other *p*-norms and the von Neumann entropy.

By the (matrix) Hölder inequality, if N obeys weak
 ∞-norm multiplicativity with exponent α, N also obeys weak *p*-norm multiplicativity for any *p* > 1, with exponent α(1-1/*p*), via

 $||X||_{\infty} \leq ||X||_{p} \leq ||X||_{1}^{1/p} ||X||_{\infty}^{1-1/p}.$

• Using monotonicity of Rényi entropies, we can also write down a result for the von Neumann entropy in certain regimes, e.g. $r = d_A = d_B$:

$$\frac{1}{n}H_{\min}(\mathcal{N}^{\otimes n}) \geq \frac{1}{2}H_{\min}(\mathcal{N}) - O(1).$$

Proof technique

Conceptually very simple:

- Let *M* be the projector onto a random dimension *r* subspace of C^d_A ⊗ C^d_B.
- **2** Relax $h_{\text{SEP}}(M)$ to a quantity which is multiplicative.
- O Prove an upper bound on this quantity.
- Prove a lower bound on $h_{\text{SEP}}(M)$.

Proof technique

Conceptually very simple:

- Let *M* be the projector onto a random dimension *r* subspace of C^d_A ⊗ C^d_B.
- **2** Relax $h_{\text{SEP}}(M)$ to a quantity which is multiplicative.
- O Prove an upper bound on this quantity.
- Prove a lower bound on $h_{\text{SEP}}(M)$.

The only technical part is (3), which uses techniques from random matrix theory.

• Similar techniques were used by [Collins and Nechita ×3, '09], [Aubrun '10], [Collins, Fukuda and Nechita '11], ...

We use the operator norm of the partial transpose M^{Γ} .

We use the operator norm of the partial transpose M^{Γ} .

• A bipartite quantum state ρ is said to be positive partial transpose (PPT) if $\rho^{\Gamma} \ge 0$.

We use the operator norm of the partial transpose M^{Γ} .

- A bipartite quantum state ρ is said to be positive partial transpose (PPT) if $\rho^{\Gamma} \ge 0$.
- $\bullet~$ We have SEP \subset PPT and hence

$$h_{\text{PPT}}(M) := \max_{\rho \in \text{PPT}} \operatorname{tr} M \rho \ge h_{\text{SEP}}(M).$$

We use the operator norm of the partial transpose M^{Γ} .

- A bipartite quantum state ρ is said to be positive partial transpose (PPT) if $\rho^{\Gamma} \ge 0$.
- We have $SEP \subset PPT$ and hence

$$h_{\text{PPT}}(M) := \max_{\rho \in \text{PPT}} \operatorname{tr} M \rho \ge h_{\text{SEP}}(M).$$

Observation

 $h_{\rm PPT}(M) \leqslant \|M^{\Gamma}\|_{\infty}.$

We use the operator norm of the partial transpose M^{Γ} .

- A bipartite quantum state ρ is said to be positive partial transpose (PPT) if $\rho^{\Gamma} \ge 0$.
- We have $SEP \subset PPT$ and hence

$$h_{\text{PPT}}(M) := \max_{\rho \in \text{PPT}} \operatorname{tr} M \rho \ge h_{\text{SEP}}(M).$$

Observation

$$h_{\rm PPT}(M) \leqslant \|M^{\Gamma}\|_{\infty}.$$

Observation

For any operators M, N, $\|(M \otimes N)^{\Gamma}\|_{\infty} = \|M^{\Gamma} \otimes N^{\Gamma}\|_{\infty} = \|M^{\Gamma}\|_{\infty} \|N^{\Gamma}\|_{\infty}.$

Lower bounding $h_{\text{SEP}}(M)$

Proposition

Let *M* be the projector onto an *r*-dimensional subspace of $\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$. Then

$$h_{\text{SEP}}(M) \geqslant \max\left\{\frac{r}{d_A d_B}, \frac{1}{d_A}\right\}.$$

Lower bounding $h_{\text{SEP}}(M)$

Proposition

Let *M* be the projector onto an *r*-dimensional subspace of $\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$. Then

$$h_{\text{SEP}}(M) \geqslant \max\left\{\frac{r}{d_A d_B}, \frac{1}{d_A}\right\}.$$

(Proof: for the first part, pick a uniformly random product state; for the second part, note that by the correspondence with quantum channels, any state output from the channel which corresponds to M must have largest eigenvalue at least $1/d_A$.)

Lower bounding $h_{\text{SEP}}(M)$

Proposition

Let *M* be the projector onto an *r*-dimensional subspace of $\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$. Then

$$h_{\text{SEP}}(M) \geqslant \max\left\{\frac{r}{d_A d_B}, \frac{1}{d_A}\right\}.$$

(Proof: for the first part, pick a uniformly random product state; for the second part, note that by the correspondence with quantum channels, any state output from the channel which corresponds to M must have largest eigenvalue at least $1/d_A$.)

Thus, if we can show that $||M^{\Gamma}||_{\infty} = O\left(\max\left\{\frac{r}{d_A d_B}, \frac{1}{d_A}\right\}^{1/2}\right)$ with high probability, we'll be done.

Large deviation bounds

• Our main result will follow easily from putting good upper bounds on $\mathbb{E} \operatorname{tr}(M^{\Gamma})^k$ for arbitrary *k*.

Large deviation bounds

- Our main result will follow easily from putting good upper bounds on $\mathbb{E} \operatorname{tr}(M^{\Gamma})^k$ for arbitrary *k*.
- Let M₀ be the projector onto an arbitrary dim *r* subspace of C^{d_A} ⊗ C^{d_B} and set

 $M^{(k)} := \mathbb{E}_U[U^{\otimes k} M_0^{\otimes k} (U^{\dagger})^{\otimes k}].$

Large deviation bounds

- Our main result will follow easily from putting good upper bounds on $\mathbb{E} \operatorname{tr}(M^{\Gamma})^k$ for arbitrary *k*.
- Let M₀ be the projector onto an arbitrary dim *r* subspace of C^{d_A} ⊗ C^{d_B} and set

$$M^{(k)} \coloneqq \mathbb{E}_U[U^{\otimes k}M_0^{\otimes k}(U^{\dagger})^{\otimes k}].$$

Then

$$\mathbb{E}\operatorname{tr}(M^{\Gamma})^{k} = \operatorname{tr}[D(\kappa)^{\Gamma}M^{(k)}],$$

where

$$D(\pi) \coloneqq \sum_{i_1,\ldots,i_k=1}^{d_A d_B} |i_{\pi(1)}
angle |i_{\pi(2)}
angle \ldots |i_{\pi(k)}
angle \langle i_1| \ldots \langle i_k|$$

is the representation of the permutation $\pi \in S_k$ which acts by permuting the *k* systems, and κ is an arbitrary *k*-cycle.

Main technical result

Theorem

For any *k* satisfying $2k^{3/2} \leq \min\{d_A, d_B, r\}$,

$$\operatorname{tr}[D(\kappa)^{\Gamma}M^{(k)}] \leqslant \begin{cases} \operatorname{poly}(k)2^{6k}r^{k/2}d_A^{-k/2+1}d_B^{-k/2+1} & \text{if } r \geqslant d_B/d_A \\ \operatorname{poly}(k)2^{6k}d_A^{-k+1}d_B & \text{otherwise.} \end{cases}$$

Main technical result

Theorem

For any *k* satisfying $2k^{3/2} \leq \min\{d_A, d_B, r\}$,

$$\operatorname{tr}[D(\kappa)^{\Gamma} M^{(k)}] \leq \begin{cases} \operatorname{poly}(k) 2^{6k} r^{k/2} d_A^{-k/2+1} d_B^{-k/2+1} & \text{if } r \geq d_B/d_A \\ \operatorname{poly}(k) 2^{6k} d_A^{-k+1} d_B & \text{otherwise.} \end{cases}$$

The above implies (when $r \ge d_B/d_A$, for example):

Theorem

There exists a universal constant *C* such that, for any $\delta > 0$,

$$\Pr\left[\|M^{\Gamma}\|_{\infty} \ge \delta \frac{2^{8} r^{1/2}}{d_{A}^{1/2} d_{B}^{1/2}}\right] \le Cm^{16/3} \delta^{-(m/2)^{2/3}}$$

where $m = \min\{r, d_A, d_B\} \ge 2(\log_2 \max\{r, d_A, d_B\})^{3/2}$.

• Write

$$M^{(k)} = \sum_{\pi \in S_k} lpha_\pi D(\pi)$$

for some α_{π} (follows from Schur-Weyl duality).

• Write

$$M^{(k)} = \sum_{\pi \in S_k} lpha_\pi D(\pi)$$

for some α_{π} (follows from Schur-Weyl duality).

• Use

$$\operatorname{tr}[D(\kappa)^{\Gamma}D(\pi)] = d_A^{c(\kappa\pi)} d_B^{c(\kappa^{-1}\pi)},$$

where $c(\pi)$ is the number of cycles in π

• Write

$$M^{(k)} = \sum_{\pi \in S_k} lpha_\pi D(\pi)$$

for some α_{π} (follows from Schur-Weyl duality).

• Use

$$\operatorname{tr}[D(\kappa)^{\Gamma}D(\pi)] = d_A^{c(\kappa\pi)} d_B^{c(\kappa^{-1}\pi)},$$

where $c(\pi)$ is the number of cycles in π (proof:

$$\begin{aligned} \operatorname{tr}[D(\kappa)^{\Gamma}D(\pi)] &= \operatorname{tr}[(D_{d_{A}}(\kappa) \otimes D_{d_{B}}(\kappa)^{T})(D_{d_{A}}(\pi) \otimes D_{d_{B}}(\pi))] \\ &= \operatorname{tr}[D_{d_{A}}(\kappa)D_{d_{A}}(\pi)]\operatorname{tr}[D_{d_{B}}(\kappa^{-1})D_{d_{B}}(\pi)] \\ &= d_{A}^{c(\kappa\pi)}d_{B}^{c(\kappa^{-1}\pi)}). \end{aligned}$$

• Write

$$M^{(k)} = \sum_{\pi \in S_k} \alpha_{\pi} D(\pi)$$

for some α_{π} (follows from Schur-Weyl duality).

• Use

$$\operatorname{tr}[D(\kappa)^{\Gamma}D(\pi)] = d_A^{c(\kappa\pi)} d_B^{c(\kappa^{-1}\pi)},$$

where $c(\pi)$ is the number of cycles in π (proof:

$$\begin{aligned} \operatorname{tr}[D(\kappa)^{\Gamma}D(\pi)] &= \operatorname{tr}[(D_{d_{A}}(\kappa) \otimes D_{d_{B}}(\kappa)^{T})(D_{d_{A}}(\pi) \otimes D_{d_{B}}(\pi))] \\ &= \operatorname{tr}[D_{d_{A}}(\kappa)D_{d_{A}}(\pi)]\operatorname{tr}[D_{d_{B}}(\kappa^{-1})D_{d_{B}}(\pi)] \\ &= d_{A}^{c(\kappa\pi)}d_{B}^{c(\kappa^{-1}\pi)}). \end{aligned}$$

• Upper bound the α_{π} coefficients.

Bounding the α_{π} coefficients

When k is small with respect to d_Ad_B, the matrices {D(π)} are almost orthonormal with respect to the normalised Hilbert-Schmidt inner product, i.e.

$$\frac{1}{(d_A d_B)^k} \operatorname{tr}[D(\pi)^{\dagger} D(\sigma)] \approx 0 \text{ if } \pi \neq \sigma.$$

Bounding the α_{π} coefficients

When k is small with respect to d_Ad_B, the matrices {D(π)} are almost orthonormal with respect to the normalised Hilbert-Schmidt inner product, i.e.

$$\frac{1}{(d_A d_B)^k} \operatorname{tr}[D(\pi)^{\dagger} D(\sigma)] \approx 0 \text{ if } \pi \neq \sigma.$$

• We know $\operatorname{tr} D(\pi)M^{(k)} = r^{c(\pi)}$ for any π . Because of the near-orthonormality we ought to have

$$\alpha_{\pi} \approx \frac{\mathrm{tr}[M^{(k)}D(\pi^{-1})]}{\mathrm{tr}[D(\pi^{-1})D(\pi)]} = \frac{r^{c(\pi)}}{(d_A d_B)^k}$$

Bounding the α_{π} coefficients

When k is small with respect to d_Ad_B, the matrices {D(π)} are almost orthonormal with respect to the normalised Hilbert-Schmidt inner product, i.e.

$$\frac{1}{(d_A d_B)^k} \operatorname{tr}[D(\pi)^{\dagger} D(\sigma)] \approx 0 \text{ if } \pi \neq \sigma.$$

• We know $\operatorname{tr} D(\pi)M^{(k)} = r^{c(\pi)}$ for any π . Because of the near-orthonormality we ought to have

$$\alpha_{\pi} \approx \frac{\operatorname{tr}[M^{(k)}D(\pi^{-1})]}{\operatorname{tr}[D(\pi^{-1})D(\pi)]} = \frac{r^{c(\pi)}}{(d_A d_B)^k}$$

- In fact, the α_{π} coefficients can be calculated explicitly in terms of the Weingarten function.
- Finding a bound on this function lets us upper bound α_{π} .

Completing the proof

Lemma

Assume $k \leq (r/2)^{2/3}$. Then $|\alpha_{\pi}| \leq \operatorname{poly}(k) 2^{4k} \frac{r^{c(\pi)}}{(d_A d_B)^k}.$

Completing the proof

Lemma

Assume $k \leq (r/2)^{2/3}$. Then $|\alpha_{\pi}| \leq \operatorname{poly}(k) 2^{4k} \frac{r^{c(\pi)}}{(d_A d_B)^k}$.

• Using this bound on the α_{π} coefficients, we're left with $\operatorname{tr}[D(\kappa)^{\Gamma}M^{(k)}] \leq \operatorname{poly}(k)2^{4k} \sum_{\pi \in S_k} d_A^{c(\kappa\pi)-k} d_B^{c(\kappa^{-1}\pi)-k} r^{c(\pi)}$

Completing the proof

Lemma

Assume $k \leq (r/2)^{2/3}$. Then $|\alpha_{\pi}| \leq \operatorname{poly}(k) 2^{4k} \frac{r^{c(\pi)}}{(d_A d_B)^k}$.

- Using this bound on the α_{π} coefficients, we're left with $\operatorname{tr}[D(\kappa)^{\Gamma}M^{(k)}] \leq \operatorname{poly}(k)2^{4k} \sum_{\pi \in S_{k}} d_{A}^{c(\kappa\pi)-k} d_{B}^{c(\kappa^{-1}\pi)-k} r^{c(\pi)}$
- To finish off, show that there can't be "too many" permutations π such that $c(\pi)$, $c(\kappa\pi)$ and $c(\kappa^{-1}\pi)$ are all large simultaneously.

Conclusions

• We've proven weak multiplicativity for random quantum channels by relaxing to a multiplicative quantity which we can upper bound using ideas from random matrix theory.

Conclusions

- We've proven weak multiplicativity for random quantum channels by relaxing to a multiplicative quantity which we can upper bound using ideas from random matrix theory.
- The result obtained is probably the strongest one could expect given known violations of multiplicativity.

Conclusions

- We've proven weak multiplicativity for random quantum channels by relaxing to a multiplicative quantity which we can upper bound using ideas from random matrix theory.
- The result obtained is probably the strongest one could expect given known violations of multiplicativity.
- In particular, by the results of Hayden and Winter, in certain regimes

 $\| \mathbb{N} \otimes \overline{\mathbb{N}} \|_{1 \to \infty} \approx \| \mathbb{N} \|_{1 \to \infty}$

for random \mathbb{N} , so increasing the exponent from 1/2 seems unlikely (?).

Open problems

Prove weak *p*-norm multiplicativity for all quantum channels!

Open problems

Prove weak *p*-norm multiplicativity for all quantum channels!

On a more concrete level:

- The technique used here fails completely for the antisymmetric subspace.
- However, [Christandl, Schuch and Winter '09] have shown using a different technique that the antisymmetric subspace also obeys weak *p*-norm multiplicativity.
- Can one proof technique be made to work for both channels?

Thanks!

arXiv:1112.5271