Quantum de Finetti theorems under local measurements

Aram Harrow (MIT) QIP 2013

based on arXiv:1210.6367
joint work with Fernando Brandão (ETH)

Symmetric States

 $ho^{AB_1...B_n}$ is permutation symmetric in the B subsystems if for every permutation π , $ho^{AB_1...B_n}=\rho^{AB_{\pi(1)}...B_{\pi(n)}}$

$$ho^{AB_1...B_n}$$
 A ho_1 B ho_2 B ho_{n-1} B ho_4 B ho_3 B ho_n A ho_1 B ho_2 B ho_3 B ho_4 B ho_1 B ho_2 B ho_3 B ho_4 B ho_1 B ho_2 B ho_3 B ho_4

Quantum de Finetti Theorem

Theorem [Christandl, Koenig, Mitchison, Renner '06]

Given a state $\rho^{AB_1...B_n}$ symmetric under exchange of ${\bf B_1...B_n}$, there exists μ such that

$$\left\| \rho^{AB_1...B_k} - \int \mu(\mathrm{d}\sigma) \rho_\sigma \otimes \sigma^{\otimes k} \right\|_1 \le \frac{d^2k}{n}$$

builds on work by [Størmer '69], [Hudson, Moody '76], [Raggio, Werner '89] [Caves, Fuchs, Sachs '01], [Koenig, Renner '05]

Proof idea:

Perform an informationally complete measurement of n-k B systems.

Applications:

<u>information theory</u>: tomography, QKD, hypothesis testing <u>algorithms</u>: approximating separable states, mean-field theory

Quantum de Finetti Theorem as Monogamy of Entanglement

Definition: $\rho^{\rm AB}$ is n-extendable if there exists an extension $\rho^{AB_1...B_n}$ with $\rho^{AB}=\rho^{AB_i}$ for each i.

all quantum states (= 1-extendable)
2-extendable

100-extendable

separable =
∞-extendable

Algorithms: Can search/optimize over n-extendable states in time d^{O(n)}.

Question: How close are n-extendable states to separable states?

Quantum de Finetti theorem

Theorem [Christandl, Koenig, Mitchison, Renner '06]

Given a state $\rho^{\overline{A}B_1...B_n}$ symmetric under exchange of ${\bf B_1...B_n}$, there exists μ such that

$$\left\| \rho^{AB_1...B_k} - \int \mu(\mathrm{d}\sigma) \rho_\sigma \otimes \sigma^{\otimes k} \right\|_1 \le \frac{d^2k}{n}$$

Difficulty:

- 1. Parameters are, in many cases, too weak.
- 2. They are also essentially tight.

Way forward:

- 1. Change definitions (of error or i.i.d.)
- 2. Obtain better scaling

relaxed/improved versions

Two examples known:

- 1. Exponential de Finetti Theorem: [Renner '07] error term $\exp(-\Omega(n-k))$. Target state convex combination of "almost i.i.d." states.
- 2. measure error in 1-LOCC norm [Brandão, Christandl, Yard '10] For error ε and k=1, requires n $\sim \varepsilon^{-2} \log |A|$.

This talk
improved de Finetti theorems for local
measurements

main idea use information theory

$$log |A| \ge I(A:B_1...B_n) = I(A:B_1) + I(A:B_2|B_1) + ... + I(A:B_n|B_1...B_{n-1})$$

repeatedly uses chain rule: I(A:BC) = I(A:B) + I(A:C|B)

 \rightarrow I(A:B_t|B₁...B_{t-1}) \leq log(|A|)/n for some t \leq n.

If $B_1...B_n$ were classical, then we would have

$$ho^{AB}=
ho^{AB_t}=\sum \pi_i
ho_i^{AB}$$
 *separable

Question:

How to make $B_{1...n}$ classical?

distribution on $B_1...B_{t-1}$

≈product state (cf. Pinsker ineq.)

Answer: measure!

Fix a measurement M:B \rightarrow Y. I(A:B_t|B₁...B_{t-1}) $\leq \varepsilon$ for the measured state (id \otimes M $^{\circ n}$)(ρ).

<u>Then</u>

- ρ^{AB} is hard to distinguish from $\sigma \in Sep$ if we first apply (id $\otimes M$)
- $\| (id \otimes M)(\rho \sigma) \| \le \text{small for some } \sigma \in \text{Sep.}$

Theorem $AB_1...B_n$ Given a state $P^{AB_1...B_n}$ symmetric under exchange of $B_1...B_n$, and $\{\Lambda_i\}$ a collection of operations from $A\rightarrow X$,

$$\min_{\sigma \in \text{Sep}} \max_{M} \mathbb{E} \left\| (\Lambda_i^A \otimes M^B) (\rho^{AB} - \sigma^{AB}) \right\|_1 \le \sqrt{\frac{2 \ln |X|}{n}}$$

Cor: setting $\Lambda = id$ recovers [Brandão, Christandl, Yard '10] 1-LOCC result.

advantages/extensions

Given a state $ho^{AB_1...B_n}$ symmetric under exchange of $\mathsf{B_1...B_n}$, and $\{\Lambda_i\}$ a collection of operations from $\mathsf{A}\!\!\to\!\mathsf{X}$, $\min_{\sigma\in\operatorname{Sep}}\max_{M}\mathbb{E}\left\|(\Lambda_i^A\otimes M^B)(\rho^{AB}-\sigma^{AB})\right\|_1\leq \sqrt{\frac{2\ln|X|}{n}}$

- 1. Simpler proof and better constants
- 2. Bound depends on |X| instead of |A| (can be ∞ dim)
- 3. Applies to general non-signalling distributions
- 4. There is a multipartite version (multiply error by k)
- 5. Efficient "rounding" (i.e. σ is explicit)
- 6. Symmetry isn't required (see Fernando's talk on Thursday)

applications

- nonlocal games
 - Adding symmetric provers "immunizes" against entanglement / non-signalling boxes. (Caveat: needs uncorrelated questions.)
 Conjectured improvement would yield NP-hardness for 4 players.
- BellQMA(poly) = QMA
 Proves Chen-Drucker SAT∈BellQMA_{log(n)}(√n) protocol is optimal.
- pretty good tomography [Aaronson '06]
 on permutation-symmetric states (instead of product states)
- convergence of Lasserre hierarchy for polynomial optimization see also 1205.4484 for connections to small-set expansion

open questions

- Is QMA(2) = QMA? Is SAT = QMA_{√n}(2)_{1,1/2} optimal?
 (Would follow from replacing 1-LOCC with SEP-YES.)
- · Can we reorder our quantifiers to obtain

$$\min_{\sigma \in \text{Sep } i} \mathbb{E} \max_{M} \left\| (\Lambda_i^A \otimes M^B) (\rho^{AB} - \sigma^{AB}) \right\|_1 \le \sqrt{\frac{2 \ln |X|}{n}}?$$

(no-signalling analogue is FALSE assuming P≠NP)

- The usual de Finetti questions:
 - better counter-examples
 - how much does it help to add PPT constraints?

arXiv:1210.6367