Adversary Lower Bound for the k-sum Problem

Alexander Belov University of Latvia Robert Špalek Google, Inc.

January 22, 2013 QIP 2013, Beijing, China

IEGULDĪJUMS TAVĀ NĀKOTNĒ

This work has been supported by the European Social Fund within the project "Support for Doctoral Studies at University of Latvia"

On the Power of Learning Graphs

Alexander Belov

Ansis Rosmanis University of Latvia University of Waterloo

> Robert Špalek Google, Inc.

Based on arXiv:1206.6528 and arXiv:1210.3279

Query Complexity

Problem

Query Complexity Certificate Structures Our Results Proof Sketch

Computational Problem

The amount of resources required to solve it?

Ideally: Time necessary for a quantum computer to solve it.

Problem

Query Complexity Certificate Structures Our Results Proof Sketch

Computational Problem

The amount of resources required to solve it?

Ideally: Time necessary for a quantum computer to solve it.

Alas, we don't know much about it.

Problem

Query Complexity Certificate Structures Our Results Proof Sketch

Computational Problem

The amount of resources required to solve it?

Ideally: Time necessary for a quantum computer to solve it.

Simplification: Number of accesses to the input string

Quantum Query Complexity

Query Complexity Certificate Structures Our Results Proof Sketch

Function

$$f \colon [q]^n \supseteq \mathcal{D} \to \{0,1\}$$

Query algorithm: calculate $f(x_1, x_2, \dots, x_n)$,

can access individual x_j in one query.

Quantum query complexity: number of queries the best quantum query

algorithm makes on the worst input.

Quantum Query Complexity

Query Complexity Certificate Structures Our Results Proof Sketch

Function

$$f \colon [q]^n \supseteq \mathcal{D} \to \{0,1\}$$

Query algorithm: calculate $f(x_1, x_2, \dots, x_n)$,

can access individual x_j in one query.

Quantum query complexity: number of queries the best quantum query

algorithm makes on the worst input.

Does this make things simpler?..

Adversary Bound

Query Complexity Certificate Structures Our Results Proof Sketch

Quantum query complexity admits formulation as an SDP: **Adversary Bound**

$$\begin{aligned} &\text{maximize} & &\|\Gamma\| \\ &\text{subject to} & &\|\Gamma \circ \Delta_j\| \leq 1 & &\text{for all } j \in [n]. \end{aligned}$$

Here: Γ is an $f^{-1}(1) \times f^{-1}(0)$ -matrix with real entries, and

$$\Delta_j[\![x,y]\!] = \begin{cases} 1, & x_j \neq y_j; \\ 0, & \text{otherwise.} \end{cases}$$

Certificate Structures

Simplification

Query Complexity Certificate Structures Our Results Proof Sketch

Simplification II:

Only consider the *positions* of certificates inside the input string. Not the values therein.

Example/Motivation

Query Complexity Certificate Structures Our Results Proof Sketch

Quantum walk on the Johnson Graph

Ambainis developed it to solve k-distinctness:

Given (x_1, \ldots, x_n) , detect whether there are k equal elements among them.

Quantum walk on subsets of [n]. Accept if the values of variables in $S \subseteq [n]$ are enough to deduce f(x) = 1.

Runs in $O\left(n^{k/(k+1)}\right)$ quantum queries.

Example/Motivation

Query Complexity Certificate Structures Our Results Proof Sketch

Quantum walk on the Johnson Graph

Ambainis developed it to solve k-distinctness:

Given (x_1, \ldots, x_n) , detect whether there are k equal elements among them.

Quantum walk on subsets of [n]. Accept if the values of variables in $S \subseteq [n]$ are enough to deduce f(x) = 1.

Runs in $O\left(n^{k/(k+1)}\right)$ quantum queries.

Childs and Eisenberg:

The same algorithm can be used for *any* function with small certificates:

k-distinctness, k-sum, graph collision, matrix product verification...

k-sum:

Given $(x_1, \ldots, x_n) \in [q]^n$, detect whether there are k elements whose sum is divisible by q.

Certificate Structure

Query Complexity Certificate Structures Our Results Proof Sketch

Function

$$f: [q]^n \supseteq \mathcal{D} \to \{0,1\}$$

For $x \in f^{-1}(1)$, write out:

$$M_x = \{S \subseteq [n] \mid S \text{ is enough to deduce } f(x) = 1 \}.$$

The set of all M_x is a certificate structure C. (Interested in inclusion-wise minimal M_x only.)

Certificate Structure

Query Complexity Certificate Structures Our Results Proof Sketch

Function

$$f: [q]^n \supseteq \mathcal{D} \to \{0, 1\}$$

For $x \in f^{-1}(1)$, write out:

$$M_x = \{S \subseteq [n] \mid S \text{ is enough to deduce } f(x) = 1 \}.$$

The set of all M_x is a certificate structure C. (Interested in inclusion-wise minimal M_x only.)

k-subset certificate structure

Mutual certificate structure of k-distinctness and k-sum.

2-subset on 4 variables:

(Only interested in inclusion-minimal M_x .)

Example/Motivation

Query Complexity Certificate Structures Our Results Proof Sketch

Quantum walk on subsets of [n]. Accept if the values of x in $S\subseteq [n]$ are enough to deduce f(x)=1.

Runs in $O\left(n^{k/(k+1)}\right)$ quantum queries.

Conjecture (Childs and Eisenberg). Quantum walk on the Johnson graph is optimal for the k-sum problem.

Example/Motivation

Query Complexity Certificate Structures Our Results Proof Sketch

Quantum walk on subsets of [n]. Accept if the values of x in $S \subseteq [n]$ are enough to deduce f(x) = 1.

Runs in $O\left(n^{k/(k+1)}\right)$ quantum queries.

Conjecture (Childs and Eisenberg). Quantum walk on the Johnson graph is optimal for the k-sum problem.

Intuition: Even if we are given k-1 elements of a k-tuple, we have absolutely no additional information whether the k-tuple forms a certificate.

The k-sum problem does not possess any structure.

Another Example

Query Complexity Certificate Structures Our Results Proof Sketch

Collision Problem

Distinguish between two cases

Negative: each symbol in the input string is unique; or

Positive: each symbol in the input string has exactly two appearances.

E.g., negative input: 2746 and three variants of positive inputs:

Query Complexity Certificate Structures Our Results Proof Sketch

- Computational model that relies on the certificate structure by definition.
- Generalizes quantum walk on the Johnson graph.

Query Complexity Certificate Structures Our Results Proof Sketch

- Each edge e of the Hasse diagram is assigned non-negative conductance c_e .
- For each $M \in \mathcal{C}$, we connect \emptyset to one terminal, and all $S \in M$ to the other terminal of a current source.

Query Complexity Certificate Structures Our Results Proof Sketch

- Each edge e of the Hasse diagram is assigned non-negative conductance c_e .
- For each $M \in \mathcal{C}$, we connect \emptyset to one terminal, and all $S \in M$ to the other terminal of a current source.

Learning graph complexity of C is defined as

minimize

$$\sqrt{\sum_{e \in \mathcal{E}} c_e}$$

is at most 1 for all $M \in \mathcal{C}$

Query Complexity Certificate Structures Our Results Proof Sketch

- Each edge e of the Hasse diagram is assigned non-negative conductance c_e .
- \blacksquare For each $M \in \mathcal{C}$, we connect \emptyset to one terminal, and all $S \in M$ to the other terminal of a current source.

Learning graph complexity of C is defined as

minimize

subject to effective resistance from \emptyset to Mis at most 1 for all $M \in \mathcal{C}$

Theorem (Belov and Lee). For each f having certificate structure C, there exists a quantum query algorithm with complexity equal to the learning graph complexity of C up to a constant factor.

Our Results

Outline

Query Complexity Certificate Structures Our Results Proof Sketch

- We derive a dual formulation of the learning graph complexity.
- We use it to give (almost) tight lower bounds for some certificate structures:

k-subset, collision, hidden shift, triangle.

Outline

Query Complexity Certificate Structures Our Results Proof Sketch

- We derive a dual formulation of the learning graph complexity.
- We use it to give (almost) tight lower bounds for some certificate structures:

k-subset, collision, hidden shift, triangle.

- We prove learning graphs are tight for any certificate structure.
- We prove an analogue of Childs-Eisenberg conjecture for a wide range of certificate structures.
 (Implies the original conjecture).

Learning Graph Revisited

Query Complexity Certificate Structures Our Results Proof Sketch

More details (using electric flow):

minimize
$$\sqrt{\sum_{e \in \mathcal{E}} c_e}$$

subject to
$$\sum_{e \in \mathcal{E}} \frac{p_e(M)^2}{c_e} \leq 1 \quad \text{for all } M \in \mathcal{C};$$

for each $M \in \mathcal{C}$, $p_e(M)$ form a flow from \emptyset to M of value 1

The dual formulation (using potentials):

$$\alpha_S(M) = 0$$
 whenever $S \in M$;

k-subset certificate structure

Query Complexity Certificate Structures Our Results Proof Sketch

Theorem. The learning graph complexity of the k-subset certificate structure is $\Omega(n^{k/(k+1)})$.

$$\max_{M \in \mathcal{C}} \sqrt{\sum_{M \in \mathcal{C}} \alpha_{\emptyset}(M)^2}$$

$$\sum_{M \in \mathcal{C}} \left(\alpha_S(M) - \alpha_{S \cup \{j\}}(M)\right)^2 \leq 1$$

$$\alpha_S(M) = 0 \quad \text{whenever } S \in M$$

k-subset certificate structure

Query Complexity Certificate Structures Our Results Proof Sketch

Theorem. The learning graph complexity of the k-subset certificate structure is $\Omega(n^{k/(k+1)})$.

$$\max_{M \in \mathcal{C}} \frac{\sum_{M \in \mathcal{C}} \alpha_{\emptyset}(M)^2}{\sum_{M \in \mathcal{C}} \left(\alpha_S(M) - \alpha_{S \cup \{j\}}(M)\right)^2 \leq 1}$$

$$\alpha_S(M) = 0 \quad \text{whenever } S \in M$$

 $\alpha_S(M) = \begin{cases} \binom{n}{k}^{-1/2} \max \left\{ n^{k/(k+1)} - |S|, \ 0 \right\}, & S \notin M \\ 0, & \text{otherwise.} \end{cases}$

Perform simple calculations.

Other Certificate Structures

Query Complexity Certificate Structures Our Results Proof Sketch

We also prove that the learning graph complexity

of the collision and the hidden shift certificate structures is $\Omega(\sqrt[3]{n})$

and

of the triangle certificate structure is $\tilde{\Omega}(n^{9/7})$.

Corollary. The learning graph for the triangle problem from the next presentation is essentially tight.

Tightness I

Query Complexity Certificate Structures Our Results Proof Sketch

We prove learning graphs are tight:

Theorem. For any certificate structure C, there exists f possessing C such that the quantum query complexity of f is at least the learning graph complexity of C up to a constant factor.

Tightness I

Query Complexity Certificate Structures Our Results Proof Sketch

We prove learning graphs are tight:

Theorem. For any certificate structure C, there exists f possessing C such that the quantum query complexity of f is at least the learning graph complexity of C up to a constant factor.

For the analogue of the Childs-Eisenberg conjecture, we need more notions...

Boundedly generated certificate

Query Complexity Certificate Structures Our Results Proof Sketch

Definition. A certificate structure C is boundedly generated if, for any $M \in \mathcal{C}$, one can find a subset $A_M \subseteq [n]$ such that $|A_M| = O(1)$, and $S \in M$ if and only if $S \supseteq A_M$.

The k-subset certificate structure is boundedly generated:

The collision certificate structure is not:

Tightness II

Query Complexity Certificate Structures Our Results Proof Sketch

Definition. A certificate structure C is boundedly generated if, for any $M \in C$, one can find a subset $A_M \subseteq [n]$ such that $|A_M| = O(1)$, and $S \in M$ if and only if $S \supseteq A_M$.

C-sum problem.

Given $(x_1, \ldots, x_n) \in [q]^n$, decide whether there exists $M \in \mathcal{C}$ such that $\sum_{j \in A_M} x_j$ is divisible by q.

Theorem. If C is boundedly generated and f is the C-sum problem with q > 2|C|, then the quantum query complexity of f equals the learning graph complexity of f up to a constant factor.

Proof Sketch

Adversary Bound

Query Complexity Certificate Structures Our Results Proof Sketch

We use the adversary bound

$$\begin{aligned} &\text{maximize} & &\|\Gamma\| \\ &\text{subject to} & &\|\Gamma \circ \Delta_j\| \leq 1 & &\text{for all } j \in [n]. \end{aligned}$$

Here: Γ is an $f^{-1}(1) \times f^{-1}(0)$ -matrix with real entries, and

$$\Delta_j[\![x,y]\!] = \begin{cases} 1, & x_j \neq y_j; \\ 0, & \text{otherwise.} \end{cases}$$

Former Modes of Applications

Query Complexity Certificate Structures Our Results Proof Sketch

Adversary bound has been used as:

1. Non-negative weight adversary

Original version by Ambainis. Combinatorial reasoning. Easy to use. Has strong limitations (certificate complexity, property testing barriers). Fails for our applications.

2. Small functions

By solving the optimization problem on computer.

3. **Tight composition theorems**

Composing functions from the second point. Formulae evaluation.

We use spectral analysis via embedding.

Hamming Association Scheme

Query Complexity Certificate Structures Our Results Proof Sketch

Two orthogonal projectors on \mathbb{C}^q :

$$E_0 = \begin{pmatrix} 1/q & 1/q & \cdots & 1/q \\ 1/q & 1/q & \cdots & 1/q \\ \vdots & \vdots & \ddots & \vdots \\ 1/q & 1/q & \cdots & 1/q \end{pmatrix}$$

$$E_{0} = \begin{pmatrix} 1/q & 1/q & \cdots & 1/q \\ 1/q & 1/q & \cdots & 1/q \\ \vdots & \vdots & \ddots & \vdots \\ 1/q & 1/q & \cdots & 1/q \end{pmatrix} \qquad E_{1} = \begin{pmatrix} 1 - 1/q & -1/q & \cdots & -1/q \\ -1/q & 1 - 1/q & \cdots & -1/q \\ \vdots & \vdots & \ddots & \vdots \\ -1/q & -1/q & \cdots & 1 - 1/q \end{pmatrix}$$

For $S \subseteq [n]$, define

$$E_S = \bigotimes_{j=1}^n E_{S[[j]]}.$$

These are orthogonal projectors on \mathbb{C}^{q^n} .

Action of Δ

Query Complexity Certificate Structures Our Results Proof Sketch

subject to
$$\|\Gamma \circ \Delta_j\| \le 1$$
 for all $j \in [n]$.

For

$$E_{0} = \begin{pmatrix} 1/q & 1/q & \cdots & 1/q \\ 1/q & 1/q & \cdots & 1/q \\ \vdots & \vdots & \ddots & \vdots \\ 1/q & 1/q & \cdots & 1/q \end{pmatrix} \qquad E_{1} = \begin{pmatrix} 1 - 1/q & -1/q & \cdots & -1/q \\ -1/q & 1 - 1/q & \cdots & -1/q \\ \vdots & \vdots & \ddots & \vdots \\ -1/q & -1/q & \cdots & 1-1/q \end{pmatrix}$$

we have

$$E_0 \mapsto E_0 \qquad E_1 \mapsto -E_0.$$

Embedding Γ into $\widetilde{\Gamma}$

Query Complexity Certificate Structures Our Results Proof Sketch

C-sum problem.

Given $(x_1, \ldots, x_n) \in [q]^n$, decide whether there exists $M \in \mathcal{C}$ such that $\sum_{j \in A_M} x_j$ is divisible by q.

$$\widetilde{G}_M$$
 is $[q]^n \times [q]^n$ -matrix.

$$X_M = \{x \in [q]^n \mid \sum_{j \in A_M} x_j \equiv 0 \pmod{q}\}$$

 $|X_M| = q^{n-1}$

Y is the set of negative inputs $q \geq 2|\mathcal{C}| \Longrightarrow |Y| \geq q^n/2$

Defining $\widetilde{\Gamma}$

Query Complexity Certificate Structures Our Results Proof Sketch

$$\max_{M \in \mathcal{C}} \frac{\sum_{M \in \mathcal{C}} \alpha_{\emptyset}(M)^2}{\sum_{M \in \mathcal{C}} \left(\alpha_S(M) - \alpha_{S \cup \{j\}}(M)\right)^2 \leq 1}$$

$$\alpha_S(M) = 0 \quad \text{whenever } S \in M$$

$$\widetilde{G}_M = \sum_{S \subseteq [n]} \alpha_S(M) E_S$$

$$\widehat{G}_M = \sqrt{q} \ \widetilde{G}_M[X_M, [q]^n]$$

$$G_M = \widehat{G}_M[\![X_M, Y]\!]$$

Transformation

Query Complexity Certificate Structures Our Results Proof Sketch

Properties of $\widetilde{\Gamma}'$

Query Complexity Certificate Structures Our Results Proof Sketch

$$\max_{M \in \mathcal{C}} \sqrt{\sum_{M \in \mathcal{C}} \alpha_{\emptyset}(M)^2}$$

$$\sum_{M \in \mathcal{C}} \left(\alpha_S(M) - \alpha_{S \cup \{j\}}(M)\right)^2 \leq 1$$

$$\alpha_S(M) = 0 \quad \text{whenever } S \in M$$

Due to $E_0 \mapsto E_0$ and $E_1 \mapsto -E_0$, we get

$$\widetilde{G}'_{M} = \sum_{S \not\ni j} (\alpha_{S}(M) - \alpha_{S \cup \{j\}}(M)) E_{S}$$

$$\widehat{G}_M' = \sqrt{q} \ \widetilde{G}_M' [X_M, [q]^n]$$

We prove this does not increase the norm a lot.

Summary

Query Complexity Certificate Structures Our Results Proof Sketch

- We defined the notion of certificate structure.
- We derived a dual formulation of the learning graph complexity.
- We used it to give (almost) tight lower bounds for some certificate structures:

k-subset, collision, hidden shift, triangle.

- We proved learning graphs are tight for any certificate structure.
- We defined boundedly generated certificate structures.
- We proved an analogue of Childs-Eisenberg conjecture for boundedly generated certificate structures.

Thank you!