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Computational
Problem

The amount of resources required to solve it?

Ideally: Time necessary for a quantum computer to solve it.
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Computational
Problem

The amount of resources required to solve it?

Ideally: Time necessary for a quantum computer to solve it.

Alas, we don't know much about it.
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Computational
Problem

The amount of resources required to solve it?

Ideally: J+meneeessary for a quantum computer to solve it.
Simplification:  Number of accesses to the input string

4/ 34



- Quantum Query Complexity -
Query Complexity Certificate Structures Our Results Proof Sketch

Function

f:lg" 2D —{0,1}

Query algorithm: calculate f(x1,9,...,2y),
can access individual z; in one query.
Quantum query complexity: number of queries the best quantum query
algorithm makes on the worst input.
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Function

f:lg" 2D —{0,1}

Query algorithm: calculate f(x1,9,...,2y),
can access individual z; in one query.
Quantum query complexity: number of queries the best quantum query
algorithm makes on the worst input.

Does this make things simpler?..
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- Adversary Bound
Query Complexity Certificate Structures Our Results Proof Sketch

Quantum query complexity admits formulation as an SDP:
Adversary Bound

maximize  ||T|

subject to [0 Aj|| <1 for all j € [n].

Here: T is an f~1(1) x f~1(0)-matrix with real entries, and

Aj[[x,y]]—{ 1 7Y,

0, otherwise.
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- Query Complexity Certificate Structures Our Results Proof Sketch -

Certificate Structures




e e [ ] e
Simplification
Query Complexity Certificate Structures Our Results Proof Sketch

Simplification |l:
Only consider the positions of certificates inside the input string.
Not the values therein.
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- Example/Motivation -
Query Complexity Certificate Structures Our Results Proof Sketch

Quantum walk on the Johnson Graph
Ambainis developed it to solve k-distinctness:
Given (x1,...,Ty), detect whether there are k equal elements among them.

Quantum walk on subsets of [n].
Accept if the values of variables in S C [n] are
enough to deduce f(x) = 1.

Runs in O (nk/(k“)) quantum queries.
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Quantum walk on the Johnson Graph
Ambainis developed it to solve k-distinctness:
Given (x1,...,Ty), detect whether there are k equal elements among them.

Quantum walk on subsets of [n].
Accept if the values of variables in S C [n] are
enough to deduce f(x) = 1.

Runs in O (nk/(k“)) quantum queries.

Childs and Eisenberg:
The same algorithm can be used for any function with small certificates:

k-distinctness, k-sum, graph collision, matrix product verification...

k-sum:
Given (z1,...,x,) € |q]", detect whether there are k elements whose sum is
divisible by g.
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- Certificate Structure -
Query Complexity Certificate Structures Our Results Proof Sketch

Function
f:lg" 2D —{0,1}

For x € f71(1), write out:
M, ={S C[n] | S is enough to deduce f(z) =1 }.

The set of all M, is a certificate structure C.
(Interested in inclusion-wise minimal M, only.)
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Function
f:lg" 2D —{0,1}

For x € f71(1), write out:
M, ={S C[n] | S is enough to deduce f(z) =1 }.

The set of all M, is a certificate structure C.
(Interested in inclusion-wise minimal M, only.)

k-subset certificate structure
Mutual certificate structure of k-distinctness and k-sum.

10 / 34



2-subset on 4 variables:

4711

4171

4117

(Only interested in inclusion-minimal M,.)



- Example/Motivation -
Query Complexity Certificate Structures Our Results Proof Sketch

Quantum walk on subsets of [n].
Accept if the values of x in S C [n] are enough
to deduce f(x) = 1.

Runs in O (nk/(k“)) quantum queries.

Conjecture (Childs and Eisenberg). Quantum walk on the Johnson graph is
optimal for the k-sum problem.
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Query Complexity Certificate Structures Our Results Proof Sketch -

Quantum walk on subsets of [n].
Accept if the values of x in S C [n] are enough
to deduce f(x) = 1.

Runs in O (nk/(k“)) quantum queries.

Conjecture (Childs and Eisenberg). Quantum walk on the Johnson graph is
optimal for the k-sum problem.

Intuition: Even if we are given k — 1 elements of a k-tuple, we have
absolutely no additional information whether the k-tuple forms a certificate.

The k-sum problem does not possess any structure.
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- Another Example -
Query Complexity Certificate Structures Our Results Proof Sketch

Collision Problem

Distinguish between two cases
Negative: each symbol in the input string is unique; or

Positive:  each symbol in the input string has exactly two appearances.

E.g., negative input: 2746 and three variants of positive inputs:
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Learning graphs

Query Complexity Certificate Structures Our Results Proof Sketch

m  Computational model that relies on the cer-
tificate structure by definition.
m  Generalizes quantum walk on the Johnson

graph.
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Learning graphs

Query Complexity Certificate Structures Our Results Proof Sketch -

m Each edge e of the Hasse diagram is assigned
non-negative conductance c..

m For each M € C, we connect () to one
terminal, and all S € M to the other terminal

of a current source.
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non-negative conductance c..

m For each M € C, we connect () to one
terminal, and all S € M to the other terminal

of a current source.

Learning graph complexity of C is defined as

minimize C
Y e
subject to  effective resistance from () to M
is at most 1 for all M €C
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Learning graphs -
Query Complexity Certificate Structures Our Results Proof Sketch

m Each edge e of the Hasse diagram is assigned
non-negative conductance c..

m For each M € C, we connect () to one
terminal, and all S € M to the other terminal

of a current source.

Learning graph complexity of C is defined as

minimize C
Y e
subject to  effective resistance from () to M
is at most 1 for all M €C

Theorem (Belov and Lee). For each f having certificate structure C, there
exists a quantum query algorithm with complexity equal to the learning graph
complexity of C up to a constant factor.
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Our Results




e
Query Complexity Certificate Structures Our Results Proof Sketch

m  We derive a dual formulation of the learning graph complexity.
m  We use it to give (almost) tight lower bounds for some certificate
structures:

k-subset, collision, hidden shift, triangle.
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We derive a dual formulation of the learning graph complexity.
We use it to give (almost) tight lower bounds for some certificate
structures:

k-subset, collision, hidden shift, triangle.

We prove learning graphs are tight for any certificate structure.
We prove an analogue of Childs-Eisenberg conjecture for a wide range of
certificate structures.

(Implies the original conjecture).
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Learning Graph Reuvisited

Query Complexity Certificate Structures Our Results Proof Sketch -

More details (using electric flow):

minimize E Ce
ecf

M)?
subject to E e Pe(M)
e Ce

for each M € C, pe(M) form a
flow from () to M of value 1

<1 forall M eC;

The dual formulation (using potentials):

maximize \/ZMeC ag(M)?

subject to ZMGC (s (M) — aSU{j}(M))2 <1 forallj &5 C|nl
ag(M) =0 whenever S € M;
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- k-subset certificate structure -
Query Complexity Certificate Structures Our Results Proof Sketch

Theorem. The learning graph max. > ap(M)?
complexity of the k-subset MeC ,
certificate structure is Q(n*/(k+1)), > (as(M) — aSU{j}(M)) <1
MeC
ag(M) =0 whenever S € M
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Theorem. The learning graph max. > ap(M)?
complexity of the k-subset MeC ,
certificate structure is Q(n*/(k+1)), > (as(M) — aSU{j}(M)) <1
MeC
ag(M) =0 whenever S € M

)T max (a0 — 5] 0}, S ¢ M
0, otherwise.
Perform simple calculations. []
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- Other Certificate Structures

Query Complexity Certificate Structures Our Results Proof Sketch

We also prove that the learning graph complexity

of the collision and the hidden shift certificate structures

is Q(/n)

and
of the triangle certificate structure is Q(n%/7).

Corollary. The learning graph for the triangle problem from the next
presentation is essentially tight.
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We prove learning graphs are tight:

Theorem. For any certificate structure C, there exists | possessing C such

that the quantum query complexity of f is at least the learning graph
complexity of C up to a constant factor.
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We prove learning graphs are tight:

Theorem. For any certificate structure C, there exists | possessing C such

that the quantum query complexity of f is at least the learning graph
complexity of C up to a constant factor.

For the analogue of the Childs-Eisenberg conjecture, we need more notions...
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- Boundedly generated certificate -
Query Complexity Ce§££e gu‘!;c!iae!%l§ Results Proof Sketch
Definition. A certificate structure C is boundedly generated if, for any

M € C, one can find a subset Ay; C [n] such that |[Ay/| = O(1), and S € M
if and only if S O Ay,.

The k-subset certificate structure is The collision certificate structure is
boundedly generated: not:
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Definition. A certificate structure C is boundedly generated if, for any
M € C, one can find a subset Ay; C [n] such that |[Ay/| = O(1), and S € M
if and only if S O Ay,.

C-sum problem.
Given (x1,...,2T,) € |q]", decide whether there exists M € C such that

D icA,, Tj is divisible by g.

Theorem. [fC is boundedly generated and f is the C-sum problem with
q > 2|C|, then the quantum query complexity of f equals the learning graph
complexity of f up to a constant factor.
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Proof Sketch




- Adversary Bound
Query Complexity Certificate Structures Our Results Proof Sketch

We use the adversary bound

maximize  ||T|

subject to  [[T'o Aj|| <1 for all j € [n].

Here: T is an f~1(1) x f~1(0)-matrix with real entries, and

1, x; # yj;
0, otherwise.

Aj[[ajvy]] — {
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- Former Modes of Applications -
Query Complexity Certificate Structures Our Results Proof Sketch

Adversary bound has been used as:

1. Non-negative weight adversary
Original version by Ambainis. Combinatorial reasoning. Easy to use.
Has strong limitations (certificate complexity, property testing barriers).
Fails for our applications.

2. Small functions
By solving the optimization problem on computer.

3. Tight composition theorems
Composing functions from the second point. Formulae evaluation.

We use spectral analysis via embedding.
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- Hamming Association Scheme

Query Complexity Certificate Structures Our Results Proof Sketch

Two orthogonal projectors on CY:

(/g /g -+ 1/q) (1—1/q ~1/q -+ —1/q\

1/q 1/q --- 1/q -1/q 1-1/q --- —1/q
Eo = ; ; ; by = ; ; :

\1/(1 1/q --- 1/(1) \—1/41 ~1/q - 1—1/q)

For S C [n], define

Eg = @ Esp;1-
j=1

These are orthogonal projectors on C4".
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- Action of A
Query Complexity Certificate Structures Our Results Proof Sketch

subject to ||[I'o A,|| <1 for all j € [n].

For
(1/a /g -+ 1/q) (1-1/¢ —l/g - —1/q\
1/q 1/q --- 1/q ~1/q 1-1/q - —1/q
b = ; ; ; by = ; ; ;
\1/(1 1/q --- l/q) \—1/61 ~1/q .- 1—1/q)
we have

Eo— Ej Ei — —Ey.
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Embedding I into T

Query Complexity Certificate Structures Our Results Proof Sketch -

C-sum problem.

Given (x1,...,2y) € [q]", decide whether
N there exists M € C such that > .4, ; is

T ! X ‘. divisible by q.

G is [g]™ x [g]™-matrix.

X ={zelg" | 2 jca,, ¥ =0 (mod g)}
|XM‘ — qn—l

Y is the set of negative inputs
q = 2|Cl=[Y]=q"/2
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Defining T

Query Complexity Certificate Structures Our Results Proof Sketch -

max. ||| max. [ > ag(M)?
IFo Al <1 Mec
2
~ > (as(M) — asop (M) < 1
T _ X q MeC
5 e as(M)=0 whenever S € M

é]\/_[ — Z aS(M)ES
SC[n]

G = va GulXu, "]

Gy = Gu[ X, Y]
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Transformation

Query Complexity Certificate Structures Our Results Proof Sketch
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Query Complexity Certificate Structures Our Results Proof Sketch -

max. ||T||

IToAjlf <1

Properties of I"

max. | > ag(M)?
MeC

5> (as(M) — sy (M) <1
MeC

ag(M) =0 whenever S € M

Due to Eg — Eg and E; — —Ey, we get

Gy =Y (as(M) — agugsy(M))Es

SZj

G = VA Gy X, [a]"]

We prove this does not increase the norm a lot.
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Summary

Query Complexity Certificate Structures Our Results Proof Sketch

We defined the notion of certificate structure.

We derived a dual formulation of the learning graph complexity.
We used it to give (almost) tight lower bounds for some certificate
structures:

k-subset, collision, hidden shift, triangle.

We proved learning graphs are tight for any certificate structure.

We defined boundedly generated certificate structures.

We proved an analogue of Childs-Eisenberg conjecture for boundedly
generated certificate structures.
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Thank you!
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